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Abstract— IEEE 802.11 Wi-Fi equipment based wireless mesh
networks have recently been proposed as an inexpensive approach
to connect far-flung rural areas. Such networks are built using
high-gain directional antenna that can establish long-distance
point-point links. In recent work [16], a new MAC protocol
named 2P has been proposed that is suited for the interference
pattern within such a network. However, the 2P protocol requires
the underlying graph (for each 802.11 channel) to be bi-partite.
Under the assumption that 2P is the MAC protocol used in the
mesh network, we make the following contributions in this paper.
Given K non-interfering 802.11 channels, we propose a simple
cut-based algorithm to computeK bi-partite sub-graphs (on each
of which the 2P protocol can be run separately). We establish
the class of graphs that can thus be completely covered byK bi-
partite subgraphs. For the remaining set of graphs, we look into
the “price” of routing all end-to-end demands over only the bi-
partite subgraphs. We analytically establish what fraction of the
max flow of the original mesh-graph can be routed over the bi-
partite subgraphs. Finally we look into the problem of mismatch
between the load on a link (as computed by max flow) and it’s
effective capacity under a given channel allocation. We propose
heuristics to cluster links with similar loads into the same bi-
partite graphs (channels) and through comprehensive numerical
simulations show that our heuristics come very close to the best
possible flow.

I. I NTRODUCTION

In this paper, we describe channel allocation and routing
algorithms for long-distance rural wireless mesh networks.
Rural networks exist in population areas with very low pay-
ing capacity. Hence a very important requirement for these
networks is to minimize the infrastructure costs. The cost
of laying wire to rural areas is prohibitively expensive and
this is also true of traditional wide area wireless technologies
such as cellular networks and upcoming technologies like
IEEE 802.16 Wi-Max. Recent work [16] in the literature has
demonstrated an alternative approach by building rural mesh
network prototypes using IEEE 802.11 Wi-Fi equipment. IEEE
802.11 equipment is highly commoditized and goes a long way
in addressing the cost issues for this environment, and is thus
the cheapest option to build such networks.

As depicted in Figure 1, a typical rural mesh network would
consist of a cluster of villages connected with each other
through point-to-point wireless links. Some special nodes in
this mesh, calledgatewaynodes, will be connected to the
wired internet. Other mesh nodes will connect to the gateway
node (and thus, to the rest of the internet) through one or more
hops in the mesh. Rural mesh networks are characterized by
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Fig. 1. A wireless rural mesh network

a fixed, outdoor topology (a node in this network will be a
village) and very long-distance links between the nodes (about
10-15kms).

However, the 802.11 MAC was originally designed for
(and widely deployed in) short-distance campus area networks
with mobile nodes, and thus may not be well suited for
deployment in the long distance, fixed topology, rural network
environment. But, as [16] has demonstrated, by using high-
gain directional antennae, a line-of-sight long-distance (> 25
kms.) 802.11 link can be established. While this apparently
physical limitation of 802.11 can be overcome by using such
special-purpose antennae, there remain other issues.

Radiation leakage from the directional antennae causes
adjacent links at a node to interfere with each other in
certain communication modes. Specifically, a node cannot
simultaneously transmit and receive on its adjacent links on
the same channel. (This is calledMix-Rx-Txinterference [16].)
An obvious approach towards addressing this problem is
to operate the interfering links in differentnon-interfering
channelsof IEEE 802.11. The number of such channels,
however, is limited - e.g. just3 in 802.11b and 802.11g.

The presence of Mix-Rx-Tx interference affects the through-
put of the mesh graph by restricting the number of links that
can operate simultaneously. Specifically, as we will explain
in more detail later, Mix-Rx-Tx interference imposes the
restriction that only abi-partite subgraph of the network
graph can be active on one channel. Given this fundamental
restriction, the crucial questions are - how to select bi-partite
subgraphs to route the traffic of the entire mesh graph? And,



what is the drop in performance suffered by routing only over
the links in the bi-partite subgraphs as compared to routing
over the entire mesh graph? Towards this end, we make several
contributions.

We consider a mesh graphG = (V, E), a set of source-
destination demandsD and K non-interfering 802.11 chan-
nels. Given that only a bi-partite subgraph can be activated
for a given channel, it follows that withK channels we
can simultaneously activate onlyK bi-partite sub-graphs.
We propose an approach to findK bi-partite subgraphs by
recursively applying a cut algorithm onG. We then show
that if this cut algorithm always gives us theMax-Cutof the
underlying graph, then if at leastλ fraction of each source-
destination demands can be routed overG, then in the worst-
caseλ′ = Ω( 2Kλ

2K+log(|E|) ) fraction of each source-destination
demands can be met by routingonly over theK bi-partite
subgraphs. We also identify the class of graphs for which all
of the traffic that can be carried over the mesh graph can also
be carried by the bi-partite subgraphs (i.e.,λ′ = λ).

Given our algorithm to route traffic overK bi-partite
subgraphs ofG, the next question is how to schedule the links
on the bi-partite graphs. In recent work, Raman et al. [16]
have proposed a new MAC protocol (called2P) to schedule
links within a bi-partite graph in the presence of Mix-Rx-Tx
interference. We adopt this protocol for scheduling links since
it has the nice property of ensuring 100% utilization of links.
However, a shortcoming of this protocol is that it requires all
links in a bi-partite graph to be active for the same fraction of
time in a given direction. To cope with this shortcoming, as
part of our work, we also propose heuristics to cluster links
with similar fractions, within the same bi-partite graph. Finally,
we carry out extensive simulations to validate our observations
and evaluate the quality of the proposed routing and channel
allocation schemes.

A. Related work

The paper closest to our work is [15]. In this work Raman
et al. consider the channel allocation problem in rural mesh
networks. They also assume that the 2P protocol will be
used for scheduling over bi-partite subgraphs in the given
mesh graph. The authors consider thespecificcase of how
to cover the input graph with bi-partite subgraphs when3
non-interfering channels (as is the case in IEEE 802.11b) are
available. They observe that any 6-edge colorable graph (and
thus, by Vizing’s theorem, any graph with a maximum degree
5) can be covered by3 bi-partite subgraphs, and propose an
algorithm to achieve this based on edge coloring.

We consider thegeneralcase of how to cover an input graph
with bi-partite subgraphs whenK channels are available. This
can be important since the number of 802.11 channels that are
available to the mesh network can vary. For example, 802.11a
equipment provides 11 non-interfering channels, as compared
to the 3 made available by 802.11b and 802.11g. In some
cases, channels may have to be set aside for a local WLAN
within a village or because of RF pollution (interference from

other neighboring networks). On an opposite note, a recent
work [8] has demonstrated the possibility of squeezing out 4
non-interfering channels from IEEE 802.11b and g equipment.
Therefore, in our work, using a cut algorithm to identify bi-
partite graphs, we describe the class of graphs that can be
completely covered by any givenK channels (i.e., byK bi-
partite subgraphs).

In the case whenK bi-partite graphs are not sufficient to
cover the entire mesh graph, we also provide guarantees on
the fraction of traffic that can be routed over the bi-partite
subgraphs, as compared to routing over the entire mesh graph.
This is a an aspect of our work not covered in [15]. Finally, as
in [15] we also propose and evaluate heuristics to cluster links
with similar fractions in the same bi-partite graph. However,
we propose a novel metric, based on the desiredinterval of
fractions that can be assigned to a link, to match links with
bi-partite subgraphs. This approach offers more flexibility in
finding the best assignment between links and bi-partite graphs
and, as our initial experiments suggest, performs better than
heuristics proposed in [15].

The Digital Gangetic Plains project [6] in and around
Kanpur, India is an operational example of the type of rural
mesh network that motivates this work. There have recently
been other examples of community wireless mesh networks,
such as [19] and MIT’s Roofnet [7]. However these projects
are, for most part, built using omnidirectional antenna, and
occupy smaller areas.

Link scheduling in wireless mesh networks is a much
studied problem. However, for our particular setting (long-
distance, fixed-topology meshes with directional antennae), the
2P protocol [16] is the only distributed scheduling protocol
that we know of. (However, refer to [10], [9], [5], [18], [2] for
other instances of link scheduling in wireless mesh networks.)

There has also been a considerable amount of work on
channel allocation in wireless mesh networks and analyzing
how to meet end-to-end demands, for example, in [3], [17],
[13], [14]. These works principally differ from ours in that they
consider omnidirectional antennae and thus analyze networks
with different interference properties as compared to ours.

B. Organization

The paper is organized as follows. In Section II we de-
scribe the rural mesh network architecture and communication
model. We describe how the links interfere with each other,
and explain the 2P protocol used to schedule links given this
interference in a bi-partite graph. We formally describe the
goals of this paper in Section III. In Section IV, we present
our approach to select bi-partite subgraphs from a graphG
given K non-interfering channels. We also describe a large
class of graphs that can be completely covered byK bi-
partite subgraphs. In Section V, we consider node demands,
and analyze what fraction of node demands, that can be routed
over the entire mesh graph, can also be routed over only the bi-
partite subgraphs. In Section VI, through extensive numerical
simulations, we evaluate our proposed schemes and heuristics.
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Fig. 2. (a) Mix-Rx-Tx interference at nodeN1 between transmission on
link (N1, N2) and receptions on link(N1, N3) (b) Odd cycles in a graph
cause Mix-Rx-Tx interference.

Finally, we conclude with a summary of our contributions and
directions for future work in Section VII.

II. SYSTEM MODEL

In this section, we describe the architecture of a wireless
rural mesh network. We also describe how the nodes will
communicate with each other and discuss the interference
model, i.e., the cases in which the network links will interfere
with each other. We describe the constraints (based on the
interference model) on which links can be active simultane-
ously and then briefly present the 2P link scheduling protocol
proposed by Raman et al. [16] that aims to schedule network
links within these constraints.

a) Rural mesh network architecture:As depicted in
Figure 1, the nodes in the mesh will be villages. Some
nodes will be designated asgatewaynodes that will connect
to the wired Internet. The gateway nodes will connect to
other mesh nodes through line-of-sight long-distance links.
Nodes connected to each other through directional antennas
can directly communicate with each other, and through one or
more such hops be connected to the gateway nodes.

b) Interference.:We have described how nodes in our
mesh networks will communicate with each other using di-
rectional antennae. While directional antennae are designed to
transmit and receive in a specific direction, the directionality
of this radiation becomes effective only at longer distances
from the sender. This is also called thenear field effect.
Because of this effect (as shown in Figure 2(a)), at any
node, simultaneous transmissions and receptions on thesame
channelare not possible since the transmissions will interfere
with the receptions. This is called Mix-Rx-Tx interference.1

Avoiding Mix-Rx-Tx interference, while keeping all links
active, requires that there be no odd cycles among the edges in
the graph (as shown in Figure 2(b)). This further implies that
only a bi-partite subgraph of the input graph can be activated
for a given channel at any point of time.

1Apart from Mix-Rx-Tx interference, the point-to-point links can overlap
spatially. Because of side-lobe radiation, adjacent directional links need a
minimum angular separation to operate. Otherwise, the receiving ends of
such links can be affected by the transmissions of all overlapping links. We
consider dealing with interference arising because of overlapping links to be a
topology design problem. Therefore, in this paper, we assume that following
some topology design process, we are given a network graph that satisfies the
angular separation criterion.
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Fig. 3. Different fractions on adjacent links cause Mix-Rx-Tx interference.

Another observation (as pointed out in [16]) is that while
Mix-Rx-Tx interference prevents simultaneous Tx and Rx at a
node, a node is allowed to synchronously transmit (or receive)
on all its adjacent links. This is called SynTx (or SynRx).
SynRx/SynTx together are known as SynOp: synchronous
operation of links at a node. In recent work, Raman et al. [16]
have proposed the2P MAC protocol based on SynOp. The
protocol operates on bi-partite graphs by switching each node
between two phases: SynRx and SynTx. When a node switches
from SynRx to SynTx, its neighbors switch from SynTx
to SynRx, and vice versa. The 2P protocol has a desirable
property that it guarantees 100% utilization of all links (i.e.,
the link is active in one direction or the other). However, the
2P algorithm has a constraint on the fraction of time links are
active in a given direction [15]. Consider the 2P algorithm on
a bi-partite subgraph (say, with two independent sets B1 and
B2) and operating on a single channel. Assume that a link is
always active in one direction or the other. Then the fraction
of time a link is active in a given direction (say from B1 to
B2) must be identical for all links. Otherwise, if any two links
are active for different fractions of time from B1 to B2, then,
as every link is always active in one direction or the other,
this difference in fractions propagates through the graph, and
gives rise to different fractions at some pair of adjacent links.
But, as shown in Figure 3, different fractions at two adjacent
links cause Mix-Rx-Tx interference at the common node.

Ensuring that all links are active in a given direction for the
same fraction of time, may result in reduced throughput as
the optimal flow allocation in the graph may require different
fractions for different links. Thus links in the same bi-partite
subgraph should have identical fractions, although different
bi-partite subgraphs can have different fractions. Later in the
paper we also present and evaluate heuristics to cluster links
with similar fractions in the same bi-partite graphs.

III. PROBLEM STATEMENT

We now formally define the objectives of this paper. We
are given an undirected graphG = (V, E), where each link
is of capacityL,2 K channels, and a setD = {(si, ti, di)}
of demands, where(si, ti, di) denotes a demand ofdi > 0
from si to ti. Due to the underlying scheduling algorithm,

2We assume equal link capacities for ease of presentation. Our results can
be easily extended for unequal link capacities.



any subgraph on which routing can be done should satisfy the
following two requirements.
R1. The subgraph is a union ofK edge-disjoint bi-partite sub-

graphs, sayB1, . . . , BK (where each bi-partite subgraph
corresponds to a set of links that use the same channel).

R2. Let B0
k andB1

k denote the two independent sets of each
bi-partite subgraphBk. Then for eachBk, the capacities
of all links in Bk in the direction fromB0

k to B1
k are

identical (and the capacities in the reverse direction are
also identical, because the total capacity of a link isL).
We call the fraction of time a link is operational from
B0

k to B1
k as thefraction assigned to the link, i.e., the

ratio of the capacity allocated to the directionB0
k to B1

k

to L. Thus R2 requires that the fraction of all links in a
bi-partite subgraph are identical [15].

The concurrent flow valueof a routing is the largestλ such
that the routing satisfiesλ fraction of all demands. For a graph
G, themaximum concurrent flowis defined as the maximumλ
such that there is a routing overG with concurrent flow value
λ [1].

We first consider the symmetric demands problem. Here we
assume that demands are symmetric, i.e., if(si, ti, di) ∈ D
then(ti, si, di) ∈ D. Note that, for symmetric demands, there
is a routing that achieves max concurrent flow, and which it
assigns equal loads on both directions of a link. Hence, we
can satisfy requirement R2 by assigning a fraction of 0.5 to
all links. Now, assuming that R2 is already satisfied, among
all subgraphs ofG that satisfy R1, we want to find one that
has the highest maximum concurrent flow.

We next consider the same problem but with asymmetric
demands, i.e., we make no assumptions on demands (and
hence, we cannot assume that R2 is already satisfied). Consider
all subgraphs ofG and assignment of fractions to each link
(i.e., assignment of capacities to both directions of each link)
such that requirements R1 and R2 are satisfied. We want to
find a subgraph and assignment of fractions that has the highest
maximum concurrent flow.

IV. PARTITIONING INTO BI-PARTITE GRAPHS

To obtainK bi-partite graphs, we observe that edges in a
cut naturally specify a bi-partite graph. In the following, we
will use the term cut and bi-partite graph interchangeably. (We
will denote the number of edges in a cutC by |C|.) We obtain
K bi-partite subgraphs by iteratively applying a cut algorithm
C. On the original graphG = (V, E), we applyC, and the
first bi-partite graph is given by the edges in the first cut.
We then remove the edges of the first bi-partite graph from
G, and apply the cut algorithm again to obtain the next bi-
partite graph. We repeat the processK times to obtain theK
bi-partite graphs.

Ideally, we would like our cut algorithm to cover the graph
using the smallest number of cuts. As finding a max-cut for a
general graph is an NP-hard problem,3 we use the following

3Note, however, that max-cut can be solved in polynomial time for planar
graphs [12].

simple local search based1/2 approximation of max-cut [20].
(We denote this algorithm byLS.) Initially, the set of nodes are
arbitrarily divided into two sets. Each step of the algorithm,
called aflip, does the following. It selects a nodev such that
v has more neighbors in its own set than in the other set,
and then movesv to the other set. The algorithm terminates
when there is no node that can be flipped.4 It is easy to see
that the algorithm takes at most|E| flips to terminate− each
flip increases the number of edges in the cut by at least 1.
Moreover, upon termination, for each nodev, the degree ofv
in the cut is greater than or equal to its degree in the remaining
graph (otherwise,v can be flipped). In other words, an LS-cut
satisfies the following property:

P1. After removing the cut from any graphG, the degree of
each node in the remaining graph is at most half of its degree
in G. ¥

We now characterize a class of graphs that can be covered by
K LS-cuts, denoted byB1, . . . , BK . Let LSK = ∪1≤k≤KBk.

Lemma 1:For every nodev, the degree ofv in G − LSK

is at mostd/2K , whered is the degree ofv in G.
Proof: The lemma follows from an obvious induction

on K using property P1. Here, we simply show the induction
step. Letd be the degree ofv in G. Suppose that afterK cuts,
the degree ofv in G − LSK is y ≤ d/2K . Now consider the
K + 1st cut onG− LSK . From property P1, the degree ofv
in G− LSK+1 is at mosty/2 ≤ d/2K+1.

Theorem 2:If the degree of every node inG is at most
2K − 1 thenLSK coversG.

Proof: Suppose that the maximum degree ofG is at most
2K − 1. Consider any nodev with degreed. From Lemma 1,
the number of incident edges ofv in G − LSK is at most
d/2K ≤ (2K − 1)/2K < 1. ThusG is covered byLSK .

In 802.11b and g, where there are three non-interfering chan-
nels, Theorem 2 implies thatLS-cuts can cover any graph
whose maximum degree is at most 7. In contrast, with three
channels, the approach of [15] can only cover graphs whose
maximum degree is at most 5.

V. M EETING NODE DEMANDS

We now consider node demands and provide guarantees on
the max (concurrent) flow for the subgraphLSK obtained in
the previous section. Obviously, for the same set of demands,
the max flow of LSK can be at most the max flow ofG,
and the equality trivially holds whenLSK covers G (see
Theorem 2). Thus we compare the max flow ofLSK with

4The bipartite subgraphB output by LS algorithm might be disconnected
even if the input graphG is connected. It is, however, straightforward to move
some links fromG−B to B such thatB becomes connected while remaining
bipartite.



that of G. We consider two cases: symmetric demands and
asymmetric demands.

Symmetric Demands.Recall that, for symmetric demands,
there is a routing that achieves max flow, and which assigns
equal loads for both directions of a link. Thus, we can always
satisfy requirement R2 by assigning a fraction of 0.5 to all
links. So, in this section, we assume that requirement R2 is
already satisfied.

We now show a worst-case guarantee on the max flow of
a subgraph that is obtained by applying max-cut (instead of
LS-cut). We denote theseK max-cuts byC1, . . . , CK . Let
MK = ∪1≤k≤KCk. We use the following property of a max-
cut to show our result.

P2. A cut MC of a graphG′ is a max-cut if and only if, for
every cutC of G′, the number of edges inMC ∩C is at least
|C|/2. ¥

Observe that, every max-cut also satisfies property P1. To see
why, consider the cut defined by all incident edges of a vertex
v in graphG. From property P2 of max-cut, the degree ofv, in
the graph obtained by removing a max-cut fromG, is at most
half of the degree ofv in G. Thus, Lemma 1 and Theorem 2
also hold for max-cut.

Lemma 3:For any cutC of G, the number of edges inC
that are also inMK is at least(1− 1/2K)|C|.

Proof: The proof follows from a simple induction on
K using property P2. Here, we describe the induction step.
Suppose that afterK max-cuts, the number of edges ofC in
MK is y ≥ (1− 1/2K)|C|. Let C ′ be the remaining edges of
C in G′ = G−MK . Note thatC ′ is a cut ofG′ and contains
|C| − y edges ofC. Consider theK + 1st max-cut CK+1.
From property P2, the number of edges ofC ′ in CK+1 is at
least |C ′|/2. Thus the number of edges ofC in MK+1 is at
leasty + (|C| − y)/2 ≥ (1− 1/2K+1)|C|.

Corollary 4: For any cutC of G, the ratio of the number
of edges inC that are also inMK to the number of edges in
C that are also inG−MK is at least2K − 1.

¥

Lemma 5:On removing a max-cut from a graphG′, the
remaining graphG′′ contains at most half of all the edges in
G′.

Proof: Recall that max-cut satisfies property P1. Thus,
the sum of the degree of all nodes inG′′ is at most half of the
sum of the degree of all nodes inG′. Therefore, the number
edges inG′′ is at most half of the number of edges inG′.

Lemma 6:The number of edges inG − MK is at most
|E|/2K .

Proof: The proof is by induction onK. Suppose that after
K max-cuts, the number of edges inG−MK is z ≤ |E|/2K .

Consider theK + 1st max-cutCK+1 in the remaining graph
G′ = G −MK . From Lemma 5, the number of edges ofG′

in G′ − CK+1 is at mostz/2 ≤ |E|/2K+1.

Theorem 7:Suppose that demands are symmetric, and at
leastλ fraction of every demand can be concurrently routed
overG. ThenΩ( 2Kλ

2K+log(|E|) ) fraction of every demand can be
concurrently routed overMK .

Proof: Whenλ fraction of every demand is concurrently
routed overG, every link has at mostL load. Then, for any
x ≤ 1, xλ fraction of every demand can be concurrently routed
overG, with at mostxL load for every link. Consider the same
flow over MK . Each edge inMK has at least(1 − x)L free
capacity, and every edge inG − MK has at mostxL load.
Thus, we can routexλ fraction of each demand overMK if
we can reroute the load of the edges that are not inMK , over
the free capacity of the edges that are inMK . In other words,
we can satisfyxλ fraction of each demand overMK , if we
have a max (concurrent) flow of at least 1 for the following
multicommodity flow problem: a demand ofxL corresponding
to every link inG−MK , to be routed overMK , where each
link in MK has capacity(1− x)L.

From Aumann and Rabani [4], we know that the max flow
is R/O(log(d)) where R is the sparsity ratio andd is the
number of demands. In our multicommodity flow problem,
the number of demands is the number of edges inG −MK ,
which we know from Lemma 6, is at most|E|

2K . Sparsity ratio
R is the minimum ratio over all cuts, of the capacity of the
edges across the cut to the demands across the cut. Thus, in
our multicommodity flow problem,R is the minimum over
all cutsC of eC(1−x)L

e′CxL , whereeC is the number of edges of
C that are also inMK , e′C is the number of edges ofC that
are also inG −MK . (Recall that, the edges ineC have free
capacities of(1− x)L and the edges ine′C have demands of
xL.)

But we know from Corollary 4 that for any cutC, eC

e′C
≥

2K−1. Thus max flow is at least(2
K−1)(1−x)L

xL O(log(
|E|
2K ))

. Doing simple

manipulations it follows that ifx = Ω( 2K

2K+log(|E|) ) then max

flows is at least 1 (see Appendix VIII). Thus,Ω( 2Kλ
2K+log(|E|) )

fraction of every demand can be concurrently routed overMK .

Corollary 8: Suppose that at leastλ fraction of every
demand can be concurrently routed overG. Then, if K =
log(log|E|) then Ω(λ) fraction of each demand can be con-
currently routed overMK .

¥

Theorem 7 gives a worst-case guarantee on the max flow
when the bi-partite graphs are obtained using max-cut. Al-
though computing a max-cut is NP-hard in general graphs, it
can be computed in polynomial time for planar graphs [12].
Thus, the above theorem gives a guarantee on max flow for



planar graphs. Even for general graphs, in Section VI, we show
through numerical simulations on randomly generated graphs
that LS-cuts come close to meeting the above guarantee.

Asymmetric Demands.A routing for max flow with asym-
metric demands may result in different loads for the two
directions of a link, and therefore, the routing may require
different fractions for links in the same bi-partite graph. We
extend our approach for symmetric demands for this case.

Initial Assignment of Fractions.As in the symmetric case,
using LS-cut, we obtain a subgraphLSK that is the union
of K bi-partite subgraphsB1, . . . , BK , and then compute
the routing for max flow. Since demands are asymmetric,
the resulting routing may require that the links in the same
subgraph have different fractions. To satisfy R2, we now need
to assign a single fractionfk to each bi-partite subgraphBk,
where every linke ∈ Bk is assigned fractionfk. This in turn,
may decrease routed flows, and hence, reduce max flow. To
limit this decrease in max flow, we try to minimize thetotal
mismatchof LSK , where the mismatch of a link is the absolute
difference between the fraction required by a link (which is
given by the routing) and the fraction that we assign to the
bi-partite subgraph that contains the link.

Reducing Total Mismatch.An obvious way to reduce the total
mismatch is to move links from one bi-partite subgraph to
another such that links in the same bi-partite subgraph have
fractions close to each other. However, while moving links
we need to ensure that each of the subgraphs remains bi-
partite. This problem of selecting bi-partite subgraphs so as
to minimize the total mismatch has been shown to be NP-
hard [15]. We thus give a heuristic to minimize the total
mismatch.

Link Intervals.Before discussing the heuristic, let us take a
closer look at the problem. Consider a link(u, v) in a bi-
partite subgraphBk, whereu ∈ B0

k andv ∈ B1
k. Let the load

for the routing bexL from u to v, and yL in the reverse
direction. (Obviously,x, y ≥ 0, andx + y ≤ 1.) For everyf
such thatx ≤ f ≤ 1− y, assigning a fractionf to Bk gives a
mismatch of 0 at(u, v). This is because any fraction abovex
satisfies the requirement fromu to v, and any fraction below
1− y satisfies the requirement in the reverse direction. Thus,
given the loads for both directions of a linke, we can define a
link interval Ie = [f1, f2] for link e such that, if the bi-partite
subgraph containinge is assigned any fraction inIe then the
capacities required bye are satisfied in both directions, i.e.,e
has no mismatch. So, we redefine the mismatch for a linke
as the distance of the link intervalI of e from the fraction
that is assigned to the bi-partite graph containinge. (The
distance between a fractionf and an intervalI is defined
asminf1∈I |f − f1|.) Note that, if the sum of the loads for the
two directions of a link is equal to its capacityL, then the
corresponding link interval is simply a single fraction value.

Median Intervals. Next consider all links in a bi-partite
subgraphBk. Clearly, if intervals of all links inBk have a
non-empty intersection, then assigning any fraction in that
intersection toBk results in a total mismatch of 0 forBk.
However, if there is no such intersection, we would like to
assign a fraction to the bi-partite subgraph such that the total
mismatch is minimized. We find such a fraction as follows.

For a fractionf and an intervalI = [f1, f2], we say thatI
is lower thanf if f2 ≤ f and I is higher thanf if f ≤ f1.
The median intervalis the set of fractionsf such that the
number of links with intervals lower thanf is equal to the
number of links with intervals higher thanf .5 The definition
of the median interval suggests an obvious algorithm to find
such an interval: in ascending order, sort the list of fractions
that are either the start fraction or the end fraction of the link
intervals. In this sorted list, letfa be the first fraction such
that the number of end fractions lower than or equal tofa is
equal to the number of start fractions higher than or equal to
fa. Also, let fb be the next fraction in the sorted list. Then
the median interval is[fa, fb].

For each bi-partite subgraphBk, we denote the median
interval byMIk. We now show that any fraction in themedian
interval MIk minimizes the total mismatch forBk. Consider
any fractionf ∈ MIk, and any other fractionf ′ < f . (The
argument forf ′ > f is symmetric.) LetE1 be the set of
links with intervals higher thanf , E2 be the set of links with
intervals lower thanf , and letE3 be the set of links with
intervals that containf . Also, let m(e) andm′(e) denote the
mismatch of linke whenf andf ′ are assigned as fractions to
Bk, respectively. Now, for eache ∈ E3, m(e) = 0 (because
the interval ofe containsf ), andm′(e) ≥ 0. Also, for each
e ∈ E1, m′(e) = m(e) + (f − f ′), and for eache ∈ E2,
m′(e) ≥ m(e)− (f − f ′). As f is in the median interval, we
have |E1| = |E2|. Thus, the total mismatch

∑
e m(e) when

f is assigned toBk is at most the total mismatch
∑

e m′(e)
whenf ′ is assigned toBk.

A Greedy Heuristic.Now consider the problem of reducing the
total mismatch ofLSK . We use a simple greedy heuristic to
reduce the total mismatch. We iteratively do the following. For
each bi-partite subgraphBk, we calculate the median interval
MIk, and define the cost of a linke ∈ Bk as the mismatch ofe
when the midpoint ofMIk is assigned as the fraction ofBk.6

In addition, we define the cost of a bi-partite subgraph as sum
of the costs of all its links, and the cost ofLSK as the sum of
costs of allK bi-partite subgraphs. We then selectq links with
the q highest costs and look at allKq possible assignments
of these links to theK bi-partite subgraphs (whereq is a
small positive integer). We call an assignment valid if each
Bk remains bi-partite after the assignment. We then choose
a valid assignment with the lowest total cost and update the

5This set is actually an interval because if two fractionsf1 andf2 are in
this set then all fractions betweenf1 andf2 also belong to the set.

6The total mismatch ofBk is the same for any fraction inMIk.



bi-partite subgraphs accordingly. We repeat the above steps
with updated bi-partite subgraphs if the reduction in cost of
LSK is larger than some constantε. Otherwise, we terminate
our algorithm by assigning each bi-partite subgraphBk the
fraction fk corresponding to the midpoint ofMIk. Each link
e ∈ Bk is assigned a capacity offkL from B0

k to B1
k and

(1− fk)L in the reverse direction.

VI. N UMERICAL SIMULATIONS

In this section we carry out extensive numerical simulations
to evaluate our techniques for decomposing the input graph
into K-bi-partite graphs and clustering links with similar
demands into the same bi-partite graphs. For our simulations,
we generate synthetic topologies that aim to match the geo-
graphical structure of village clusters. We now describe our
simulation setup.
Generating synthetic graph topologies.We consider a circular
plane with a radius of 50Kms. We iteratively place nodes on
this plane. We assume that a link can exist between any two
nodes only if they are within 10Kms of each other. We choose
node positions randomly, with a restriction− that a node be
within range of at least 1 node already placed on the plane.
This is to ensure that we get a connected graph. For each
node we compute the number of its candidate neighbors (i.e.,
nodes within a 10km radius of the node). We consider nodes in
decreasing order of the number of their candidate neighbors,
and select1 or 2 nodes with the greatest number of candidate
neighbors to begatewaynodes. We also fix the maximum
degree (∆) of the nodes in the graph. For every node, we
then randomly select and create a link with at most∆ other
nodes within a 10km radius. The sum of the capacities of
both directions of a link is fixed at 11Mbps (the maximum
capacity of an 802.11b channel). In our simulations we cover
two main aspects of this work. First, assuming symmetric
demands, we compare the max flow on the bi-partite subgraphs
obtained by LS algorithm with the analytical worst-case bound
for bi-partite subgraphs obtained by max-cut. Second, for
asymmetric demands, we evaluate the performance of our
heuristic for clustering links with similar fractions.

Max flow with symmetric demands.In Section IV, we had
analytically demonstrated that the max flow over the union of
K max-cuts is withinΩ( 2K

2K+log(|E|) ) of the max flow over
the entire graph. However, since max-cut is, in general, NP-
Hard to compute, we had also considered the LS algorithm to
obtain the cuts (which is a1/2 approximation to max-cut). We
now evaluate the performance of the LS algorithm in terms of
the max flow, computed over the union ofK-cuts determined
using this algorithm.

For our simulations we create 25 instances of graphs with
N = 75 nodes. We consider that all nodes have symmetric
demands of 8Mbps both to and from the gateway nodes
(initially we assume only 1 gateway node). We compute the
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Fig. 4. Ratio ofλ2/λ1 for different values ofK. Comparing the max flow
from the LS algorithm with the flow predicted analytically, if max cuts had
been used instead.

max flow,7 λ1, over the entire input graph,G. Next, we
recursively apply the LS algorithm on the graphG for values
of K = 1, 2, ..., 11 to identify K bi-partite subgraphs within
G. We then computeλ2, the max flow over the union of these
bi-partite subgraphs. We are interested in the ratioλ2

λ1
. We

compute the mean and the standard deviation of this ratio over
all graph instancesG and plot it in Figure 4 for different values
of K.8

Previously, our analysis has demonstrated that if each of
the K-cuts are max-cuts then the worst-case value ofλ2/λ1

ought to beΩ( 2K

2K+log(|E|) ). We also plot the value of this
analytical expression for different values ofK. (On average,
the number of edges|E| = 1345 for these graph instances.) It
is clear that the max flow achieved over the union ofK-cuts
computed using our LS algorithm always meets and exceeds
the predicted worst-case performance if we had used max-cuts
instead. (In our simulations the average value ofλ1 was0.33.)
Specifically, we observe that forK = 3, λ2

λ1
is already> 0.95.

We have also observed a similar trend for variations of this
experiment with different node demands, and also for graph
instances with two gateway nodes.

Max flow over cuts with asymmetric demands.Recall from
Section II that, the link scheduling protocol that we use (2P)
requires all links within a bi-partite graph to be activated for
an equal fraction of time in any given direction. In the pre-
vious simulation, we assumed that all nodes have symmetric
demands. This ensures that there is a routing that achieves
max flow such that it assigns equal loads to both directions

7We formulate the max flow problem as an LP using AMPL [11] and solve
it with the CPLEX LP-solver.

8Since, we want to evaluate the performance of the LS algorithm (vs. our
analysis) for different values ofK, we allow the nodes in these graphs to
have a maximum degree of36. This ensures that close toK = 6 cuts will
be required for the LS algorithm to cover the entire graph.



of each link. Hence, for all links to carry the load assigned to
them, they have to simply be activated for an equal fraction
of time (0.5) in both directions.

However, if nodes haveasymmetricdemands, max flow
routing can result in different loads on two directions of a
link. Also then, the fraction of time a link is required to be
activated in any given direction can differ across links within
the same bi-partite graph. Since the fraction of time a link is
active in any given direction is the same for all links within
a bi-partite graph, this mismatch may cause a link to not be
able to carry the load that was assigned to it by max flow. To
deal with this problem, in Section V, we described a heuristic
that can re-arrange links across bi-partite graphs to minimize
the mismatch. We now evaluate this heuristic.

We generate50 instances of the mesh graphs withN = 50
nodes. We fix the maximum degree a node can have to be5
(the average number of edges|E| = 124). We assume that
the nodes have an asymmetric demand of 2Mbps to 1 selected
gateway node, and 10Mbps from the gateway node. (We set
ε to 0.1. Recall that the heuristic stops when the reduction in
cost between two iterations is less than or equal toε.)

As before, we first computeλ1 on the original graph in-
stanceG. Then we run the greedy heuristic for different values
of the parameterq = 0, 1, ..., 5 (as described in Section V)
to rearrange links with similar intervals into the same bi-
partite subgraphs. Recall, that the parameterq determines the
number of links that are considered together to be reassigned
to different bi-partite graphs. We then fix the fraction for each
bi-partite graph (as would be the case when the 2P scheduling
protocol is run on this graph), by selecting the interval that will
minimize the mismatch cost across the graph. This fraction
then determines the available capacity on the links. We use
this modified capacity to compute the max flow,λ2, over the
union of bi-partite subgraphs. As before, we are interested in
the ratio λ2

λ1
. We compute the mean and standard deviation

of this ratio over all graph instances and plot it in Figure 5
for different values ofq. Larger values ofq will allow the
heuristic to evaluate more links together to decide which bi-
partite subgraph they should be placed in.

In our experiments the mean value ofλ1 over all graph
instances is0.09. As expected, the performance of the heuristic
improves for higher values ofq. Infact, forq = 5 we get a very
high mean value (0.97) of the ratio λ2

λ1
. We also observe that

the standard deviation of this ratio decreases with increasing
q.

A novel aspect of our approach is that we consider a
(desired)interval associated with each direction of the link. If
a link is assigned an operating fraction anywhere within this
interval, it will be able to carry the entire load assigned to
it by max flow. We believe this interval based approach gives
greater flexibility in minimizing the mismatch when we assign
links to bi-partite subgraphs.

In contrast, the heuristics proposed in [15] only consider
the fixed desiredfraction of a link. Their heuristics then aim
to assign links to bi-partite subgraphs (based on local search
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Fig. 5. Ratio ofλ2/λ1 for different values ofq: Evaluating the performance
of the intervals based greedy heuristic.

(λ2/λ1), Mean (std. dev.) 1 gateway 2 gateways
Interval heuristic 0.98 (0.02) 0.94 (0.05)
Fixed fraction LS 0.85 (0.06) 0.84 (0.07)

TABLE I

MEAN AND STANDARD DEVIATION OF
λ2
λ1

FOR THE INTERVALS VS.

FIXED-FRACTION BASED HEURISTICS

on top of an edge-coloring algorithm) so that the operating
fraction of the selected bi-partite graph is closest to the desired
fraction of the link. We compare ourintervalsbased heuristic
to the fixed fraction local search approach proposed in [15].
Our simulations (Table I, using the same set of parameters
and input graphs as in the previous simulation) find that for
the graph instances with1 gateway node the Intervals based
approach performs, on average,15% better than the fixed
fraction approach, and12% better when there are2 gateway
nodes. We have also carried out this comparison for sparser
graphs (similar to those used in [15]) and have observed
similar results.

To summarize, through extensive simulations we have
demonstrated that our proposed approaches perform well
within the analytical predictions and also come close to the
best possible flow in our graph instances.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper we have proposed channel allocation and rout-
ing algorithms for long-distance IEEE 802.11 based wireless
mesh networks. Our work builds on 2P, a recently proposed
MAC protocol that is well-suited for the interference pattern
found within these networks. Given that 2P has the restriction
that it can only operate on bi-partite graphs, we have made
the following contributions in this work.

Given K non-interfering 802.11 channels, we proposed a
cut-based algorithm to computeK bi-partite subgraphs (on
each of which the 2P protocol can be run separately). We



showed that a large class of graphs can thus be completely
covered byK bi-partite subgraphs. For the remaining set of
graphs, we analytically established what fraction of the max
flow of the original mesh graph can be routed over the bi-
partite subgraphs.

For a bi-partite graph, the 2P protocol also requires that
the links are active for equal fraction of time in a given
direction, and thus, restricts the capacities of links in a given
direction. Therefore, we also studied the problem of mismatch
between the load on a link (as computed by max flow) and it’s
effective capacity under a given channel allocation. To reduce
this mismatch, we considered the interval of a link, i.e., the
set of fractions of time for which the link can be scheduled in
a given direction without compromising on it’s assigned load.
To limit the decrease in max flow due to this restriction on link
capacities, we proposed a simple heuristic based on clustering
links with similar intervals into the same bi-partite graphs. We
showed through comprehensive numerical simulations that our
heuristic comes very close to the best possible flow.

There are several interesting future directions for this work.
In this paper we have assumed that adjacent links have
sufficient angular separation to allow SynOP. This may not
be true in practise. We have also assumed that nodes are
connected only through point-to-point directional antennas. An
alternate model, to reduce cost, would be that a node connects
to several other nodes through onesectoralantenna. Sectoral
antennas again introduce further spatial interference problems
both between each other and with other directional links that
overlap with them. Hence, a new distributed link scheduling
protocol may be required that can allow spatially overlapping
links to operate without interference.

We have also observed that Mix-Rx-Tx interference implies
that only a bi-partite subgraph can be active on any given
channel. We would also like to explore alternate distributed
scheduling strategies such as, for example, switch across
multiple bi-partite subgraphs that share an 802.11 channel.
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VIII. A PPENDIX: A DETAIL IN THE PROOF OFTHEOREM 7

In the proof of Theorem 7, suppose max flow is at least
(2K−1)(1−x)L

xL O(log(
|E|
2K ))

. We now show that, ifx = Ω( 2K

2K+log(|E|) ),

then max flows is at least 1. (We will assume|E| ≥ 2K ,
otherwise,MK anyway coversG.)

Let a denote( |E|
2K ). Then, there exists positive constants

a0 and c such that max flow is at least(2
K−1)(1−x)L
xLc.log(a) when

a ≥ a0. It follows that if x = x0 = 2K−1
(2K−1)+c.log(a)

then max
flows is at least 1.

We consider two casesc < 1 and c ≥ 1. Consider the
first case. Then,x0 = 2K−1

(2K−1)+c.log(a)
≥ 2K−1

(2K−1)+log(a)
≥

2K−1
2K+log(|E|)−(1+K)

≥ 2K−1
2K+log(|E|) ≥ 2K

2(2K+log(|E|)) .

Suppose c ≥ 1. Then, x0 = 2K−1
(2K−1)+c.log(a)

≥
2K−1

c(2K−1)+c.log(a)
≥ 2K−1

c(2K+log(|E|))−c(1+K)
≥ 2K−1

c(2K+log(|E|)) ≥
2K

2c(2K+log(|E|)) .

Thus, if x = Ω( 2K

2K+log(|E|) ) then max flows is at least 1.


