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Abstract— IEEE 802.11 Wi-Fi equipment based wireless mesh
networks have recently been proposed as an inexpensive approach
to connect far-flung rural areas. Such networks are built using
high-gain directional antenna that can establish long-distance directional
point-point links. In recent work [16], a new MAC protocol links

named 2P has been proposed that is suited for the interference
pattern within such a network. However, the 2P protocol requires
the underlying graph (for each 802.11 channel) to be bi-partite.
Under the assumption that 2P is the MAC protocol used in the
mesh network, we make the following contributions in this paper.
Given K non-interfering 802.11 channels, we propose a simple
cut-based algorithm to computeK bi-partite sub-graphs (on each

of which the 2P protocol can be run separately). We establish villages (nodes)
the class of graphs that can thus be completely covered b bi-
partite subgraphs. For the remaining set of graphs, we look into Fig. 1. A wireless rural mesh network

the “price” of routing all end-to-end demands over only the bi-
partite subgraphs. We analytically establish what fraction of the
max flow of the original mesh-graph can be routed over the bi-

partite subgraphs. Finally we look into the problem of mismatch @ fixed, outdoor topology (a node in this network will be a
between the load on a link (as computed by max flow) and it's village) and very long-distance links between the nodes (about
effective capacity under a given channel allocation. We propose 10-15kms).
heu_rlstlcs to cluster links with similar loads into t_he same _b|- However, the 802.11 MAC was originally designed for
partite graphs (channels) and through comprehensive numerical . . .
simulations show that our heuristics come very close to the best (@nd widely deployed in) short-distance campus area networks
possible flow. with mobile nodes, and thus may not be well suited for
deployment in the long distance, fixed topology, rural network
|. INTRODUCTION environment. But, as [16] has demonstrated, by using high-
In this paper, we describe channel allocation and routigin directional antennae, a line-of-sight long-distanse26
algorithms for long-distance rural wireless mesh networkkms.) 802.11 link can be established. While this apparently
Rural networks exist in population areas with very low payehysical limitation of 802.11 can be overcome by using such
ing capacity. Hence a very important requirement for thes@ecial-purpose antennae, there remain other issues.
networks is to minimize the infrastructure costs. The cost Radiation leakage from the directional antennae causes
of laying wire to rural areas is prohibitively expensive anddjacent links at a node to interfere with each other in
this is also true of traditional wide area wireless technologiegrtain communication modes. Specifically, a node cannot
such as cellular networks and upcoming technologies liggmultaneously transmit and receive on its adjacent links on
IEEE 802.16 Wi-Max. Recent work [16] in the literature hathe same channel. (This is callbtix-Rx-Txinterference [16].)
demonstrated an alternative approach by building rural me8h obvious approach towards addressing this problem is
network prototypes using IEEE 802.11 Wi-Fi equipment. IEE® operate the interfering links in differemon-interfering
802.11 equipment is highly commaoditized and goes a long walannelsof IEEE 802.11. The number of such channels,
in addressing the cost issues for this environment, and is thumwvever, is limited - e.g. just in 802.11b and 802.11g.
the cheapest option to build such networks. The presence of Mix-Rx-Tx interference affects the through-
As depicted in Figure 1, a typical rural mesh network wouldut of the mesh graph by restricting the number of links that
consist of a cluster of villages connected with each othean operate simultaneously. Specifically, as we will explain
through point-to-point wireless links. Some special nodes in more detail later, Mix-Rx-Tx interference imposes the
this mesh, calledgatewaynodes, will be connected to therestriction that only abi-partite subgraph of the network
wired internet. Other mesh nodes will connect to the gatewgyaph can be active on one channel. Given this fundamental
node (and thus, to the rest of the internet) through one or maestriction, the crucial questions are - how to select bi-partite
hops in the mesh. Rural mesh networks are characterizeddafpgraphs to route the traffic of the entire mesh graph? And,



what is the drop in performance suffered by routing only ovether neighboring networks). On an opposite note, a recent
the links in the bi-partite subgraphs as compared to routimgprk [8] has demonstrated the possibility of squeezing out 4
over the entire mesh graph? Towards this end, we make seve@i-interfering channels from IEEE 802.11b and g equipment.
contributions. Therefore, in our work, using a cut algorithm to identify bi-
We consider a mesh grapgh = (V, E), a set of source- partite graphs, we describe the class of graphs that can be
destination demand® and K non-interfering 802.11 chan- completely covered by any giveR channels (i.e., byK bi-
nels. Given that only a bi-partite subgraph can be activatpdrtite subgraphs).
for a given channel, it follows that with{ channels we In the case wher bi-partite graphs are not sufficient to
can simultaneously activate onlX bi-partite sub-graphs. cover the entire mesh graph, we also provide guarantees on
We propose an approach to find bi-partite subgraphs by the fraction of traffic that can be routed over the bi-partite
recursively applying a cut algorithm o&'. We then show subgraphs, as compared to routing over the entire mesh graph.
that if this cut algorithm always gives us tidax-Cutof the This is a an aspect of our work not covered in [15]. Finally, as
underlying graph, then if at least fraction of each source- in [15] we also propose and evaluate heuristics to cluster links
destination demands can be routed otgrthen in the worst- with similar fractions in the same bi-partite graph. However,
case) = m#ﬁ\m)) fraction of each source-destinatiorwe propose a novel metric, based on the desinéerval of
demands can be met by routirgnly over the K bi-partite fractions that can be assigned to a link, to match links with
subgraphs. We also identify the class of graphs for which &li-partite subgraphs. This approach offers more flexibility in
of the traffic that can be carried over the mesh graph can afsading the best assignment between links and bi-partite graphs
be carried by the bi-partite subgraphs (i.€.= \). and, as our initial experiments suggest, performs better than
Given our algorithm to route traffic oveK bi-partite heuristics proposed in [15].
subgraphs of7, the next question is how to schedule the links The Digital Gangetic Plains project [6] in and around
on the bi-partite graphs. In recent work, Raman et al. [18anpur, India is an operational example of the type of rural
have proposed a new MAC protocol (call@®) to schedule mesh network that motivates this work. There have recently
links within a bi-partite graph in the presence of Mix-Rx-TXbeen other examples of community wireless mesh networks,
interference. We adopt this protocol for scheduling links sin@ich as [19] and MIT’'s Roofnet [7]. However these projects
it has the nice property of ensuring 100% utilization of linksare, for most part, built using omnidirectional antenna, and
However, a shortcoming of this protocol is that it requires aticcupy smaller areas.
links in a bi-partite graph to be active for the same fraction of Link scheduling in wireless mesh networks is a much
time in a given direction. To cope with this shortcoming, astudied problem. However, for our particular setting (long-
part of our work, we also propose heuristics to cluster linkdistance, fixed-topology meshes with directional antennae), the
with similar fractions, within the same bi-partite graph. Finally2P protocol [16] is the only distributed scheduling protocol
we carry out extensive simulations to validate our observatiotigat we know of. (However, refer to [10], [9], [5], [18], [2] for
and evaluate the quality of the proposed routing and chanogher instances of link scheduling in wireless mesh networks.)
allocation schemes. There has also been a considerable amount of work on
channel allocation in wireless mesh networks and analyzing
A. Related work how to meet end-to-end demands, for example, in [3], [17],
The paper closest to our work is [15]. In this work Rama[13], [14]. These works principally differ from ours in that they
et al. consider the channel allocation problem in rural mesnsider omnidirectional antennae and thus analyze networks
networks. They also assume that the 2P protocol will hith different interference properties as compared to ours.
used for scheduling over bi-partite subgraphs in the given o
mesh graph. The authors consider #ecificcase of how B- Organization
to cover the input graph with bi-partite subgraphs wisen The paper is organized as follows. In Section Il we de-
non-interfering channels (as is the case in IEEE 802.11b) awribe the rural mesh network architecture and communication
available. They observe that any 6-edge colorable graph (anddel. We describe how the links interfere with each other,
thus, by Vizing’s theorem, any graph with a maximum degresnd explain the 2P protocol used to schedule links given this
5) can be covered by bi-partite subgraphs, and propose amterference in a bi-partite graph. We formally describe the
algorithm to achieve this based on edge coloring. goals of this paper in Section lll. In Section IV, we present
We consider thgeneralcase of how to cover an input graphour approach to select bi-partite subgraphs from a gr@ph
with bi-partite subgraphs whel channels are available. Thisgiven K non-interfering channels. We also describe a large
can be important since the number of 802.11 channels that el@ss of graphs that can be completely covered ibybi-
available to the mesh network can vary. For example, 802.1dartite subgraphs. In Section V, we consider node demands,
equipment provides 11 non-interfering channels, as compamet analyze what fraction of node demands, that can be routed
to the 3 made available by 802.11b and 802.11g. In soroeer the entire mesh graph, can also be routed over only the bi-
cases, channels may have to be set aside for a local WLAHIrtite subgraphs. In Section VI, through extensive numerical
within a village or because of RF pollution (interference fromimulations, we evaluate our proposed schemes and heuristics.
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Fig. 2. (a) Mix-Rx-Tx interference at nod® 1 between transmission on

link (N1, N2) and receptions on linKN'1, N3) (b) Odd cycles in a graph Fig. 3. Different fractions on adjacent links cause Mix-Rx-Tx interference.
cause Mix-Rx-Tx interference.

Another observation (as pointed out in [16]) is that while

X-Rx-Tx interference prevents simultaneous Tx and Rx at a
node, a node is allowed to synchronously transmit (or receive)

Il. SYSTEM MODEL on all its adjacent links. This is called SynTx (or SynRx).

. . . . .. SynRx/SynTx together are known as SynOp: synchronous
In this section, we describe the architecture of a wweleaé

) eration of links at a node. In recent work, Raman et al. [16]
rural mesh network. We also describe how the nodes WH ve proposed th@P MAC protocol based on SynOp. The

communicate with each other and discuss the interfere : - o
'ﬁ%tocol operates on bi-partite graphs by switching each node
model, i.e., the cases in which the network links will interfer&e P P grap y g

Finally, we conclude with a summary of our contributions an’g/l.
L - . i
directions for future work in Section VII.

ith h other. We d e th X based tween two phases: SynRx and SynTx. When a node switches
with each other. We describe the constraints (based on SynRx to SynTx, its neighbors switch from SynTx

interference model) on which links can be active simultang- SynRx, and vice versa. The 2P protocol has a desirable

) : . o
ously and then briefly present the 2P.I|nk scheduling protoc FL(gperty that it guarantees 100% utilization of all links (i.e.,
proposed by Raman et al. [16] that aims to schedule netw link is active in one direction or the other). However, the

links within these constraints. . . . 2P algorithm has a constraint on the fraction of time links are
a) Rural mesh network architectureAs depicted in active in a given direction [15]. Consider the 2P algorithm on

Figure 1, the nodes in the mesh will be villages. Somep, oo rite 'subgraph (say, with two independent sets B1 and
nodes will be designated gatewaynodes that will connect goy and gperating on a single channel. Assume that a link is
to the wired Internet. The gateway nodes will connect

more such hops be connected to the gateway nodes. as every link is always active in one direction or the other,

b) Interference.:\We have described how nodes in OUfyis gifference in fractions propagates through the graph, and
mesfh networks will commgn|cgte with each other using dives rise to different fractions at some pair of adjacent links.
rectional antennae. While directional antennae are designe [ as shown in Figure 3, different fractions at two adjacent
transmit and receive in a specific direction, the directionalify,, s cause Mix-Rx-Tx interference at the common node.
of this radiation becomes effective only at longer distancesgpgring that all links are active in a given direction for the
from the sender. This is also called tmear field effeCt ;e fraction of time, may result in reduced throughput as
Becausg of this effect (as_ shown n Flgurg 2(a)), at aliNe optimal flow allocation in the graph may require different
node, simultaneous transmissions and receptions OBAME 4 tions for different links. Thus links in the same bi-partite
channelare not possible since the transmissions will 'nterferﬁjbgraph should have identical fractions, although different
W'th_ t_he rec_eptlons. Th's is called M'?('RX'TX _'nterfere_ﬁce'bi-partite subgraphs can have different fractions. Later in the
Avoiding Mix-Rx-Tx interference, while keeping all links ,550r \ve also present and evaluate heuristics to cluster links
active, requires that there be no odd cycles among the edges i} similar fractions in the same bi-partite graphs.
the graph (as shown in Figure 2(b)). This further implies that
only a bi-partite subgraph of the input graph can be activated I1l. PROBLEM STATEMENT

for a given channel at any point of time. ' C .
9 yp We now formally define the objectives of this paper. We
1Apart from Mix-Rx-Tx interference, the point-to-point links can overlap.are given ap undirected grajh = (V’ E)' where each link
spatially. Because of side-lobe radiation, adjacent directional links needsaOf capacityL,> K channels, and a sdéd = {(s;,t;,d;)}
minimum angular separation to operate. Otherwise, the receiving endsg¥f demands, wherés;, t;,d;) denotes a demand af;, > 0

such links can be affected by the transmissions of all overlapping links. \We t D to th derlvi heduli | ith
consider dealing with interference arising because of overlapping links to b @m s; to ¢;. Due to the unaerlying scheduling algorithm,

topology design problem. Therefore, in this paper, we assume that following
some topology design process, we are given a network graph that satisfies tiféVe assume equal link capacities for ease of presentation. Our results can
angular separation criterion. be easily extended for unequal link capacities.



any subgraph on which routing can be done should satisfy tsienple local search basdd2 approximation of max-cut [20].

following two requirements. (We denote this algorithm blyS)) Initially, the set of nodes are
R1. The subgraph is a union @& edge-disjoint bi-partite sub- arbitrarily divided into two sets. Each step of the algorithm,
graphs, sayBi, ..., Bx (where each bi-partite subgraphcalled aflip, does the following. It selects a nodesuch that

corresponds to a set of links that use the same channel)has more neighbors in its own set than in the other set,
R2. Let BY and B} denote the two independent sets of eactnd then moves to the other set. The algorithm terminates
bi-partite subgraplB;,. Then for eachB,,, the capacities when there is no node that can be flipfeld.is easy to see
of all links in By in the direction fromBY to B} are that the algorithm takes at mogf| flips to terminate— each
identical (and the capacities in the reverse direction all§p increases the number of edges in the cut by at least 1.
also identical, because the total capacity of a linkl)s Moreover, upon termination, for each nodethe degree ob
We call the fraction of time a link is operational fromin the cut is greater than or equal to its degree in the remaining
Bg to B; as thefraction assigned to the link, i.e., thegraph (otherwisey can be flipped). In other words, an LS-cut
ratio of the capacity allocated to the directiét to B, satisfies the following property:
to L. Thus R2 requires that the fraction of all links in a
bi-partite subgraph are identical [15]. P1. After removing the cut from any grapfi, the degree of
The concurrent flow valuef a routing is the largesk such each node in the remaining graph is at most half of its degree
that the routing satisfies fraction of all demands. For a graphin G. [ |
G, themaximum concurrent flovg defined as the maximu
such that there is a routing ovér with concurrent flow value We now characterize a class of graphs that can be covered by

A 1] K LS-cuts, denoted by, ..., Bk. Let LSy = Ui<kp<k By.
We first consider the symmetric demands problem. Here we
assume that demands are symmetric, i.e(sjft;,d;) € D Lemma 1:For every nodev, the degree of in G — LSk

then (¢;, s;,d;) € D. Note that, for symmetric demands, thergs at mostd/2¥, whered is the degree of in G.
is a routing that achieves max concurrent flow, and which it  proof: The lemma follows from an obvious induction

assigns equal loads on both directions of a link. Hence, Wwe K using property P1. Here, we S|mp|y show the induction

can satisfy requirement R2 by assigning a fraction of 0.5 &ep. Letd be the degree of in G. Suppose that aftek cuts,

all links. Now, assuming that R2 is already satisfied, amonBe degree of in G — LSk is y < d/2¥. Now consider the

all subgraphs of= that satisfy R1, we want to find one thaty 4+ 15* cut onG — LS. From property P1, the degree of

has the highest maximum concurrent flow. in G — LSk, is at mosty/2 < d/2K+1, m
We next consider the same problem but with asymmetric

demands, i.e., we make no assumptions on demands (angheorem 2:If the degree of every node ifi is at most
hence, we cannot assume that R2 is already satisfied). Consiger_ | then S, coversG.

all subgraphs of> and assignment of fractions to each link  p ot Suppose that the maximum degreeis at most

(i.e., assignment of capacities to both directions of each linkk _ | consider any node with degreed. From Lemma 1
such that requirements R1 and R2 are satisfied. We wantyt@ number of incident edges of in G — LSy is at most

find a subgraph and assignment of fractions that has the highcg/séx < (2K —1)/2K < 1. ThusG is covered byLSx. m
maximum concurrent flow. N

IV. PARTITIONING INTO BI-PARTITE GRAPHS In 802.11b and g, where there are three non-interfering chan-

To obtain K~ bi-partite graphs, we observe that edges in R€ls, Theorem 2 implies thdtS-cuts can cover any graph
cut naturally specify a bi-partite graph. In the following, wavhose maximum degree is at most 7. In contrast, with three
will use the term cut and bi-partite graph interchangeably. (W&annels, the approach of [15] can only cover graphs whose
will denote the number of edges in a ditby |C|.) We obtain Maximum degree is at most 5.

K bi-partite subgraphs by iteratively applying a cut algorithm
C. On the original graptG = (V, E), we applyC, and the
first bi-partite graph is given by the edges in the first cut. We now consider node demands and provide guarantees on
We then remove the edges of the first bi-partite graph frothe max (concurrent) flow for the subgrapB obtained in

G, and apply the cut algorithm again to obtain the next bihe previous section. Obviously, for the same set of demands,
partite graph. We repeat the procésstimes to obtain théX  the max flow of LSk can be at most the max flow af,
bi-partite graphs. and the equality trivially holds whem.Sx covers G (see

Ideally, we would like our cut algorithm to cover the grapitheorem 2). Thus we compare the max flow a8k with
using the smallest number of cuts. As finding a max-cut for a
general graph is an NP-hard problémye use the following  “The bipartite subgraplf output by LS algorithm might be disconnected
even if the input grapld- is connected. It is, however, straightforward to move
3Note, however, that max-cut can be solved in polynomial time for planapme links fromG — B to B such thatB becomes connected while remaining
graphs [12]. bipartite.

V. MEETING NODE DEMANDS



that of G. We consider two cases: symmetric demands afitbnsider theK + 15 max-cutCx 1 in the remaining graph
asymmetric demands. G' = G — Mg. From Lemma 5, the number of edges @f

in G’ — Cx41 is at mostz/2 < |E|/25+1, [ ]
Symmetric Demands.Recall that, for symmetric demands,
there is a routing that achieves max flow, and which assignsTheorem 7:Suppose that demands are symmetric, and at
equal loads for both directions of a link. Thus, we can alwaysast \ fraction of every demand can be concurrently routed
SatiSfy requirement R2 by aSSigning a fraction of 0.5 to aﬂverG_ ThenQ(QKik) fraction of every demand can be

. . . . . . 2K 4] E
links. So, in this section, we assume that requirement R2dgncurrently routea (g\(,‘enl/}K_
already satisfied. Proof: When\ fraction of every demand is concurrently

We now show a worst-case guarantee on the max flow @futed overG, every link has at most load. Then, for any
a subgraph that is obtained by applying max-cut (instead pf< 1 ;) fraction of every demand can be concurrently routed

LS-cut). We denote thes& max-cuts byC’,...,Crk. Let  over, with at mostzL load for every link. Consider the same
My = Ui<k<k Ck. We use the following property of a max-flow over M. Each edge in/x has at leastl — z)L free
cut to show our result. capacity, and every edge i@ — My has at most: load.

Thus, we can route )\ fraction of each demand ové/ if
P2.A cut MC of a graphG’ is a max-cut if and only if, for e can reroute the load of the edges that are ndt/jp, over
every cutC' of G, the number of edges iR/ C'NC'is at least the free capacity of the edges that arelifx.. In other words,
1C|/2. B e can satisfyz)\ fraction of each demand ove¥l g, if we
have a max (concurrent) flow of at least 1 for the following
Observe that, every max-cut also satisfies property P1. To $g§iticommodity flow problem: a demand of. corresponding
why, consider the cut defined by all incident edges of a vertgx every link inG — My, to be routed oveM, where each
v in graphG. From property P2 of max-cut, the degreevofn  |ink in My has capacity(1 — z)L.
the graph obtained by removing a max-cut frémis at most  From Aumann and Rabani [4], we know that the max flow
half of the degree of in G. Thus, Lemma 1 and Theorem 24 R/O(log(d)) where R is the sparsity ratio and is the
also hold for max-cut. number of demands. In our multicommodity flow problem,
. the number of demands is the number of edge& in M,
Lemma 3:For any cutC' of G, the number of edges i \yhich we know from Lemma 6, is at mosk!. Sparsity ratio
that are also iV is at least(1 — 1/2%)[C|. . R is the minimum ratio over all cuts, of the capacity of the
Proof:  The proof follows from a simple induction oneqges across the cut to the demands across the cut. Thus, in

K" using property P2. Here, we describe the induction stef,r multicommodity flow problemp is the minimum over
Suppose that aftek” max-cuts, the number of edges ©fin 5| cuts ' of ec(l=a)L whereec is the number of edges of

el xL

M isy > (1—1/2K)|C|. Let C’ be the remaining edges of ~ that are also erK

Cin G' = G — M. Note thatC” is a cut of G’ and contains are also inG — M. (Recall that, the edges it have free

i st
|C] —y edges ofC'. Consider thek' + 1°" max-CutCk+1-  capacities of(1 — «)L and the edges in}. have demands of
From property P2, the number of edges@fin Ck 1 is at 2L)

least|C’|/2. Thus the number of edges 6f in My, is at
leasty + (|C| —y)/2 > (1 —1/25+1)|C|.

e is the number of edges df that

But we know from Corollary 4 that for any cut, ch >
C

K
2K _1. Thus max flow is at leasf——20-2)L poing simple
=L O(log(13)) g simp

Corollary 4: For any cutC of G, the ratio of the number . - - : oK
’ manipulations it follows that it = Q(sx—==1

of edges inC' that are also inV/x to the number of edges in p. _ (5isgem) N
C that are also inG — My is at leas2X — 1. flow§ is at least 1 (see Appendix VIII). ThL@’(Wé(lEl))
m fraction of every demand can be concurrently routed dver.

then max

Lemma 5:0n removing a max-cut from a grapf’, the
remaining graphG” contains at most half of all the edges in Corollary 8: Suppose that at least fraction of every
el demand can be concurrently routed ov&r Then, if K =
Proof: Recall that max-cut satisfies property P1. Thugog(log|E|) thenQ(A) fraction of each demand can be con-
the sum of the degree of all nodes@ is at most half of the currently routed ovef/x.
sum of the degree of all nodes @&'. Therefore, the number u
edges inG” is at most half of the number of edgesdGi. m
Theorem 7 gives a worst-case guarantee on the max flow
Lemma 6:The number of edges iGf — My is at most when the bi-partite graphs are obtained using max-cut. Al-
|E|/2K. though computing a max-cut is NP-hard in general graphs, it
Proof: The proof is by induction oi'. Suppose that after can be computed in polynomial time for planar graphs [12].
K max-cuts, the number of edgesGh— My is z < |E|/2X. Thus, the above theorem gives a guarantee on max flow for



planar graphs. Even for general graphs, in Section VI, we show
through numerical simulations on randomly generated grapMedian Intervals. Next consider all links in a bi-partite
that LS-cuts come close to meeting the above guarantee. subgraphBy,. Clearly, if intervals of all links inB;, have a
non-empty intersection, then assigning any fraction in that
Asymmetric Demands.A routing for max flow with asym- intersection toB; results in a total mismatch of O faB;.
metric demands may result in different loads for the twblowever, if there is no such intersection, we would like to
directions of a link, and therefore, the routing may requirassign a fraction to the bi-partite subgraph such that the total
different fractions for links in the same bi-partite graph. Wenismatch is minimized. We find such a fraction as follows.
extend our approach for symmetric demands for this case. For a fractionf and an intervall = [f1, f2], we say that!
is lower thanf if fo < f and is higher thanf if f < f;.
Initial Assignment of FractionsAs in the symmetric case, The median intervalis the set of fractionsf such that the
using LS-cut, we obtain a subgrapSy that is the union number of links with intervals lower thayi is equal to the
of K bi-partite subgraphsBi, ..., Bk, and then compute number of links with intervals higher thafi® The definition
the routing for max flow. Since demands are asymmetrigf the median interval suggests an obvious algorithm to find
the resulting routing may require that the links in the sanmsich an interval: in ascending order, sort the list of fractions
subgraph have different fractions. To satisfy R2, we now ne#tht are either the start fraction or the end fraction of the link
to assign a single fractioff, to each bi-partite subgrapB,, intervals. In this sorted list, lef, be the first fraction such
where every linke € B, is assigned fractiorf,. This in turn, that the number of end fractions lower than or equaftds
may decrease routed flows, and hence, reduce max flow. équal to the number of start fractions higher than or equal to
limit this decrease in max flow, we try to minimize thetal f,. Also, let f, be the next fraction in the sorted list. Then
mismatchof LS, where the mismatch of a link is the absolut¢he median interval i$f,, f3).
difference between the fraction required by a link (which is For each bi-partite subgrapB;, we denote the median
given by the routing) and the fraction that we assign to theterval byMIl;. We now show that any fraction in theedian
bi-partite subgraph that contains the link. interval Ml minimizes the total mismatch faB,. Consider
any fraction f € Mly, and any other fractiorf’ < f. (The
Reducing Total Mismatctn obvious way to reduce the totalargument forf’ > f is symmetric.) LetF; be the set of
mismatch is to move links from one bi-partite subgraph tinks with intervals higher tharf, E5 be the set of links with
another such that links in the same bi-partite subgraph hauéervals lower thanf, and let E5 be the set of links with
fractions close to each other. However, while moving linkisitervals that contairf. Also, letm(e) andm’(e) denote the
we need to ensure that each of the subgraphs remains rhismatch of linke when f and f’ are assigned as fractions to
partite. This problem of selecting bi-partite subgraphs so &, respectively. Now, for each € Es5, m(e) = 0 (because
to minimize the total mismatch has been shown to be NEhe interval ofe containsf), andm’(e) > 0. Also, for each
hard [15]. We thus give a heuristic to minimize the total € E;, m/(e) = m(e) + (f — f’), and for eache € Es,
mismatch. m/(e) > m(e) — (f — f'). As f is in the median interval, we
have |E,| = |E,|. Thus, the total mismatch_m(e) when
Link Intervals. Before discussing the heuristic, let us take & is assigned taB;, is at most the total mismatch_ m/(e)
closer look at the problem. Consider a lifk,v) in a bi- when f’ is assigned ta3;,.
partite subgraptBy, whereu € BY andv € B}. Let the load
for the routing bexL from u to v, and yL in the reverse A Greedy HeuristicNow consider the problem of reducing the
direction. (Obviouslyz,y > 0, andz +y < 1.) For everyf total mismatch ofLSx. We use a simple greedy heuristic to
such thatr < f < 1 —y, assigning a fractiorf to B;, gives a reduce the total mismatch. We iteratively do the following. For
mismatch of 0 afu, v). This is because any fraction abave each bi-partite subgrapB;, we calculate the median interval
satisfies the requirement fromto v, and any fraction below M, and define the cost of a linke By, as the mismatch of
1 — y satisfies the requirement in the reverse direction. Thughen the midpoint oMl is assigned as the fraction &f;.°
given the loads for both directions of a lirkwe can define a In addition, we define the cost of a bi-partite subgraph as sum
link interval I, = [f1, fo] for link e such that, if the bi-partite of the costs of all its links, and the cost b§x as the sum of
subgraph containing is assigned any fraction i, then the costs of allX bi-partite subgraphs. We then seledinks with
capacities required by are satisfied in both directions, i.e., the ¢ highest costs and look at alt? possible assignments
has no mismatch. So, we redefine the mismatch for adinkof these links to theK bi-partite subgraphs (where is a
as the distance of the link intervdl of e from the fraction small positive integer). We call an assignment valid if each
that is assigned to the bi-partite graph containing(The Bj remains bi-partite after the assignment. We then choose
distance between a fractiofi and an intervall is defined a valid assignment with the lowest total cost and update the

asmmfle]lf - fl‘) Note that, if the sum of the loads for the 5This set is actually an interval because if two fractighsand f» are in

two direCtio_ns (_)f a link is _equ_al to its (_:apaciﬂy, then the  this set then all fractions betweefi and f» also belong to the set.
corresponding link interval is simply a single fraction value. 6The total mismatch oBy, is the same for any fraction il .



bi-partite subgraphs accordingly. We repeat the above steps AJA, N'=75,1 gateway

with updated bi-partite subgraphs if the reduction in cost of = Aralysie
LSk is larger than some constant Otherwise, we terminate 09r
our algorithm by assigning each bi-partite subgraph the osf

fraction fj, corresponding to the midpoint &fll,. Each link
e € By, is assigned a capacity of,L from BY to B} and

(1 — fx)L in the reverse direction. o8y
<ol
<

VI. NUMERICAL SIMULATIONS 04

0.3

In this section we carry out extensive numerical simulations
to evaluate our techniques for decomposing the input graph
into K-bi-partite graphs and clustering links with similar o1t
demands into the same bi-partite graphs. For our simulations,
we generate synthetic topologies that aim to match the geo- K

graphical structure of village clusters. We now describe our
simulation setup Fig. 4. Ratio ofA2/)\; for different values ofi. Comparing the max flow

- . ) . . from the LS algorithm with the flow predicted analytically, if max cuts had
Generating synthetic graph topologiédfe consider a circular been used instead.

plane with a radius of 50Kms. We iteratively place nodes on

this plane. We assume that a link can exist between any two o

nodes only if they are within 10Kms of each other. We choo$BaX ﬂ_OW-7 A1, over theentire input graph, G. Next, we
node positions randomly, with a restriction that a node be récursively apply the LS algorithm on the graghfor values
within range of at least 1 node already placed on the plafd. X = 1,2,...,11 to identify K bi-partite subgraphs within
This is to ensure that we get a connected graph. For edéhVVe then computeé,, the max flow over the union of these
node we compute the number of its candidate neighbors (i@)-partite subgraphs. We are interested in the @Fﬂo We
nodes within a 10km radius of the node). We consider nodesGAMPute the mean and the standard deviation of this ratio over
decreasing order of the number of their candidate neighbofd,graph instances’ and plot it in Figure 4 for different values
and select or 2 nodes with the greatest number of candida® £° ] ) )
neighbors to begatewaynodes. We also fix the maximum Previously, our analysis has demonstrated that if each of
degree () of the nodes in the graph. For every node, whe K-cuts are max;{cuts then the worst-case value\.nf\;

then randomly select and create a link with at masbther Ought t0 beQ(gr—i-rzy). We also plot the value of this
nodes within a 10km radius. The sum of the capacities 8falytical expression for different values &f. (On average,
both directions of a link is fixed at 11Mbps (the maximunihe number of edgeg| = 1345 for these graph instances.) It
capacity of an 802.11b channel). In our simulations we covisr clear that the max flow achieved over the unionfofuts

two main aspects of this work. First, assuming symmetrg@mputed using our LS algorithm always meets and exceeds
demands, we compare the max flow on the bi-partite subgraphg predicted worst-case performance if we had used max-cuts
obtained by LS algorithm with the analytical worst-case bourigstead. (In our simulations the average value\pfvas0.33.)

for bi-partite subgraphs obtained by max-cut. Second, fopecifically, we observe that fdt = 3, 42 is already> 0.95.

asymmetric demands, we evaluate the performance of ouVVe have also observed a similar trend for variations of this
heuristic for clustering links with similar fractions. experiment with different node demands, and also for graph

instances with two gateway nodes.

0.2

Max flow with symmetric demandkB1 Section IV, we had

analytically demonstrated that the max flow over the union Max.flow over CUtS.W'th asymmetrlc deman&ecall from
K max-cuts is withine( s ?K(IED) of the max flow over Section Il that, the link scheduling protocol that we use (2P)
+log

the entire graph. However, since max-cut is, in general, Nﬁe_quires all links within a bi-partite graph to be activated for

Hard to compute, we had also considered the LS algorithmqg eq“f”" frac_tlon of time in any given direction. In the pre-.
obtain the cuts (which is &/2 approximation to max-cut). We vious simulation, we assumed that all nodes have symmetric

now evaluate the performance of the LS algorithm in terms 8Fmaf:1ds. Th'hs tin_:,qtres that there IISI a drmitlng :Eaé.acrt]_leves
the max flow, computed over the union &f-cuts determined Max flow such that 1L assigns equal foads o both directions

using this algorlthm. "We formulate the max flow problem as an LP using AMPL [11] and solve
For our simulations we create 25 instances of graphs withwith the CPLEX LP-solver.

N = 75 nodes. We consider that all nhodes have symmetricBSi”Ce' we want to evaluate the performance of the LS algorithm (vs. our

analysis) for different values ok, we allow the nodes in these graphs to
demands of 8MbpS both to and from the gateway nOdﬁéle a maximum degree 86. This ensures that close i = 6 cuts will

(initially we assume only 1 gateway node). We compute the required for the LS algorithm to cover the entire graph.



of each link. Hence, for all links to carry the load assigned to AjfA, forvarying g, N =50, 1 Gateway
them, they have to simply be activated for an equal fraction
of time (0.5) in both directions.

However, if nodes havasymmetricdemands, max flow
routing can result in different loads on two directions of a
link. Also then, the fraction of time a link is required to be
activated in any given direction can differ across links within 09
the same bi-partite graph. Since the fraction of time a link is
active in any given direction is the same for all links within ossf
a bi-partite graph, this mismatch may cause a link to not be
able to carry the load that was assigned to it by max flow. To s},
deal with this problem, in Section V, we described a heuristic
that can re-arrange links across bi-partite graphs to minimize  °™f
the mismatch. We now evaluate this heuristic.

We generaté0 instances of the mesh graphs with= 50 % 1 2 3 4 5
nodes. We fix the maximum degree a node can have to be d
(the average number of edges| = 124). We assume that Fig. 5. Ratio of\/A; for different values of;: Evaluating the performance
the nodes have an asymmetric demand of 2Mbps to 1 selectttie intervals based greedy heuristic.
gateway node, and 10Mbps from the gateway node. (We set

)\2/)\1

e to 0.1. Recall that the heuristic stops when the reduction in (A2/A1), Mean (std. dev.) 1 gateway | 2 gateways

b . . is | h al Interval heuristic 0.98 (0.02)| 0.94 (0.05)

cost between two '|terat|ons is less than or equ Jo . Fixed fraction LS 0.85 (0.06)| 0.84 (0.07)
As before, we first compute; on the original graph in- TABLE |

stancelz. Then we run the greedy heuristic for different values
of the parameter; = 0,1,...,5 (as described in Section V)

to rearrange links with similar intervals into the same bi-
partite subgraphs. Recall, that the parametdetermines the
number of links that are considered together to be reassigned

to different bi-partite graphs. We then fix the fraction for eachn top of an edge-coloring algorithm) so that the operating
bi-partite graph (as would be the case when the 2P schedulffgction of the selected bi-partite graph is closest to the desired
protocol is run on this graph), by selecting the interval that witfaction of the link. We compare otintervalsbased heuristic
minimize the mismatch cost across the graph. This fractig® the fixed fractionlocal search approach proposed in [15].
then determines the available capacity on the links. We usgr simulations (Table I, using the same set of parameters
this modified capacity to compute the max flows, over the and input graphs as in the previous simulation) find that for
union of bi-partite subgraphs. As before, we are interestedtife graph instances with gateway node the Intervals based
the ratio % We compute the mean and standard dEViati%proach performs, on average;% better than the fixed
of this ratio over all gl’aph instances and plOt it in Figure ﬁ'action approach' ani2% better when there are gateway
for different values ofq. Larger values ofg will allow the nodes. We have also carried out this comparison for sparser
heuristic to evaluate more links together to decide which kjraphs (similar to those used in [15]) and have observed
partite subgraph they should be placed in. similar results.

In our experiments the mean value af over all graph  To summarize, through extensive simulations we have
instances i9.09. As eXpeCted, the performance of the heUriStigemonstrated that our proposed approaches perform well

improves for higher values af Infact, forq = 5 we getavery ithin the analytical predictions and also come close to the
hlgh mean vaIued.97) of the ratioi—f. We also observe that best possib|e flow in our graph instances.

the standard deviation of this ratio decreases with increasing
q

MEAN AND STANDARD DEVIATION OF % FOR THE INTERVALS VS
FIXED-FRACTION BASED HEURISTICS

VIlI. CONCLUSIONS ANDFUTURE WORK

A novel aspect of our approach is that we consider aln this paper we have proposed channel allocation and rout-
(desired)interval associated with each direction of the link. Ifing algorithms for long-distance IEEE 802.11 based wireless
a link is assigned an operating fraction anywhere within thimesh networks. Our work builds on 2P, a recently proposed
interval, it will be able to carry the entire load assigned tMAC protocol that is well-suited for the interference pattern
it by max flow. We believe this interval based approach givdsund within these networks. Given that 2P has the restriction
greater flexibility in minimizing the mismatch when we assigthat it can only operate on bi-partite graphs, we have made
links to bi-partite subgraphs. the following contributions in this work.

In contrast, the heuristics proposed in [15] only consider Given K non-interfering 802.11 channels, we proposed a
the fixed desiredraction of a link. Their heuristics then aim cut-based algorithm to comput& bi-partite subgraphs (on
to assign links to bi-partite subgraphs (based on local seaedich of which the 2P protocol can be run separately). We



showed that a large class of graphs can thus be complet@by I. Chlamtac and S. Lerner. A link allocation protocol for mobile multi-

covered byK bi-partite subgraphs. For the remaining set of _ hop radio networks. IProceedings of Globecom98S5.
h Ivticall tablished what fracti f th éll] R. Fourer, D. M. Gay, and B. Kernighan\MPL A modeling language
grapns, we analytically establisned what fraction or thé max" ¢, mathematical programmingThomson, 2 edition, 2003.

flow of the original mesh graph can be routed over the bt2] F. 0. Hadlock. Finding a maximum cut of a planar graph in polynomial
partite subgraphs. time. SIAM Journal on Computingt:221-225, 1975.

. . . %3] M. Kodialam and T. Nandagopal. Characterizing achievable rates in
For a bi-partite graph, the 2P protocol also requires that” myiti-hop wireless mesh networks: the joint routing and scheduling

the links are active for equal fraction of time in a given  problem. InProceedings of MobiCon2003. '

direction, and thus, restricts the capacities of links in a givétt P Kyasanur and N. Vaidya. Capacity of multi-channel wireless mesh
. . ' . . networks. InProceedings of MobiCon2005.

direction. Therefore, we also studied the problem of mBmaFFﬁ] B. Raman. Channel allocation in 802.11-based mesh networks. In

between the load on a link (as computed by max flow) and it's  Proceedings of IEEE Infoconipr. 2006. _

effective capacity under a given channel allocation. To redulél B- Raman and K. Chebrolu. Design and evaluation of a new MAC for
. . P Y . 9 . . . long distance 802.11 mesh networks.Aroceedings of ACM Mobicom

this mismatch, we considered the interval of a link, i.e., the  Ayq. 2005.

set of fractions of time for which the link can be scheduled 7] A. Raniwala and T.-C. Chiueh. Architecture and design for an IEEE

a given direction without compromising on it's assigned load. ?n?‘g'cloln-]bgggg multi channel wireless mesh networkPraceedings of

To “m!t.the decrease in max.flow due tq th's restriction on Imtﬁ.S] J. So and N. Vaidya. Multi-channel MAC for ad hoc networks: handling

capacities, we proposed a simple heuristic based on clustering muilti-channel hidden terminals using a single tranceivePriiceedings

links with similar intervals into the same bi-partite graphs. We _~©f Mobihog 2004.

S with s arintervals '[C?t €sa e b pf’i tite g apns §9|] R. van Drunnen, J. Koolhaas, H. Schuurmans, and M. Vijn. Building
Showeq through comprehensive numerical 5'_mU|at'0nS that our 5 wireless community network in the netherlands. Proceedings of
heuristic comes very close to the best possible flow. Usenix/Freenix conferenc@003. _

There are several interesting future directions for this worlé® V- Vazirani. Approximation AlgorithmsAddison-Wesley, 2001.

In this paper we have assumed that adjacent links havg||. A pPENDIX: A DETAIL IN THE PROOF OFTHEOREM 7

suff|C|ent_ angula_r separation to allow SynOP. This may ot - the proof of Theorem 7, suppose max flow is at least
be true in practise. We have also assumed that nodes @f€_iy_z)r We now show that, itz = O oK )
connected only through point-to-point directional antennas. A O(log(,‘_)ik‘))' ’ B 2K +log(1E[)
alternate model, to reduce cost, would be that a node conndben max flows is at least 1. (We will assumg| > 2%,

to several other nodes through osectoralantenna. Sectoral otherwise, My anyway coverss.)

antennas again introduce further spatial interference problemset a denote('—’f(l). Then, there exists positive constants

both between each other and with other directional links thgt and ¢ such that max flow is at |ea§§};L—clg(();(—ax)-)L when
overlap with them. Hence, a new distributed link scheduling . oK1

. . . @ > ag. It follows that if = g = then max
protocol may be required that can allow spatially overlappi (

—1
qﬂ_ ) 2K —1)+c.log(a)
links to operate without interference ws s at least 1,
P ’ We consider two cases < 1 and ¢ > 1. Consider the

We have also observed that Mix-Rx-Tx interference impli _ oK _1 2K _1

that only a bi-partite subgraph can be active on any give(ﬁ'rlst ca;(ilThenxo — B D¥elog@ ZQK(QK_””"H(“) =

channel. We would also like to explore alternate distributet+iog([E)—(1+K) 2 2K tlog(|E]) 2 2% Hog([E]) -
scheduling strategies such as, for example, switch acrosSupposec > 1. Then, zp = m >
multiple bi-partite subgraphs that share an 802.11 channel. 281 > 251 > 251 >
c(2Kf§)K+c-log(a) = c@F+og([ED)—c(1+K) = c(2K+log([E]) =
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