(Im)Possibilities of Predicate Detection in Crash-Affected Systems

Felix Gärtner

TU Darmstadt, Germany felix@informatik.tu-darmstadt.de

joint work with Stefan Pleisch IBM Research, Zurich Research Laboratory, Switzerland

Recall WSS 1999 in Austin

- Session on future research directions.
- What has been the impact of stabilization research?
- How can we increase impact and awareness of stabilization research?
- Ted Herman's remark: Stabilization concepts are ubiquitous.
- Example: Unreliable failure detector abstraction by Chandra and Toueg [CT96].

- Process p is not suspected before it crashes.
- If p crashes, it will eventually be suspected.
- Class of perfect failure detectors \mathcal{P} .

Stabilizing Variants

- In practice "imperfect" failure detectors abound.
- Weaken the safety property
- Eventually perfect $\diamond \mathcal{P}$ [CT96]:
 - Eventually no process is suspected before it crashes.
- Infinitely often accurate $\Box \diamond \mathcal{P}$ [GM98]:
 - Correct application processes are not permanently suspected.

Contributions to Stabilization Research

- Application: predicate detection (e.g. for debugging).
- Use stabilizing components to build reliable applications.

 How can we use (unreliable) failure detectors to build (reliable?) predicate detection algorithms?

Outline

- 1. Three different predicate detection semantics.
- 2. Predicate detection algorithm.
- 3. Possibilities and impossibilities.
- 4. Advanced questions.

Predicate Detection

• Does a global predicate φ hold throughout the computation?

Predicate Detection Semantics

- Perfect predicate detection Sem₁:
 - (S) If the algorithm triggers a detection, then φ has held in the computation.
 - (L) If φ holds, then the algorithm will eventually trigger a detection.
- Stabilizing predicate detection Sem_2 : L and $\Diamond S$.
- Infinitely often accurate predicate detection Sem₃:

- L and $\Box \diamondsuit S$.

Application Example

- $\varphi \equiv \ ``p \ {\rm crashed} \ {\rm while} \ {\rm holding} \ {\rm a} \ {\rm lock}''$
- Sem₁ desirable (no wrong detections) but often infeasible.
- Finite number of wrong detections with *Sem*₂.
- If φ never holds, Sem_3 excludes a "permanent" detection of φ .
- Sem_3 better than nothing.

Algorithm

boolean variable history initially false
upon (control message arrives or
failure detector information changes) do
(update own perception of global state)

if $\langle \varphi$ holds on global state $\rangle \land \neg history$ then history := true

{trigger detection event}

elsif $\langle \neg \varphi$ holds on global state $\rangle \land history$ then history := false $\langle trigger undetection event \rangle$ end

Predicate Detection: Possibilities

- - Eventual safety of $\diamond \mathcal{P}$ leads to eventual safety of predicate detection.
- Infinitely often accurate predicate detection Sem₃ achievable using □◊𝒫.
 - $\Box \Diamond \mathcal{P}$ avoids permanent "wrong detections".

Predicate Detection: Impossibilities

• \mathcal{P} not sufficient for perfect predicate detection.

Hypothetical Stronger Failure Detector

- Ordered perfect $\hat{\mathcal{P}}$:
 - Can relate crash event of process p to the final event which happened on p.
 - Introduce a "visible" causality between control messages and failure detection events.

Types of Failure Detectors

- Chandra and Toueg [CT96]: Query-style failure detectors.
 - Spurious detections can go unnoticed.
- Garg and Mitchell [GM98]: Interrupt-style failure detectors.
 - Every detection reaches application.
- We use interrupt-style ones: No difference for ${\mathcal P}$ and $\diamondsuit {\mathcal P}.$

Stable and Observer Independent Predicates

- \mathcal{P} is sufficient for Sem_1 if φ is stable.
- If computation consists of more than one process:
 - Problems of observer dependence.
 - Introduce observation modalities [GK00] or restrict predicates to observer independent ones.
 - Only \mathcal{P} and $\hat{\mathcal{P}}$ detect in an observer-independent way.

WSS 2001

Summary

- Predicate detection in crash-affected systems.
- Which predicate detection semantics are achievable using which types of failure detectors?
- Predicate detection is difficult even with perfect failure detectors.
- Must go for stabilizing predicate detection semantics in many practical settings.

Acknowledgements

• Slides produced using pdflATEX and Klaus Guntermann's PPower4.

References

- [CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems. *Journal of the ACM*, 43(2):225–267, March 1996.
- [GK00] Felix C. Gärtner and Sven Kloppenburg. Consistent detection of global predicates under a weak fault assumption. In *Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS2000)*, pages 94–103, Nürnberg, Germany, October 2000. IEEE Computer Society Press.

WSS 2001

[GM98] Vijay K. Garg and J. Roger Mitchell. Distributed predicate detection in a faulty environment. In *Proceedings of the 18th IEEE International Conference on Distributed Computing Systems (ICDCS98)*, 1998.