Approaching a Formal Definition of Fairness in Electronic Commerce

Felix Gärtner Henning Pagnia Holger Vogt

Darmstadt University of Technology, Germany

• What is fair exchange and how does it relate to e-commerce?

- What is fair exchange and how does it relate to e-commerce?
- What are the problems with the usual definition of fair exchange?

- What is fair exchange and how does it relate to e-commerce?
- What are the problems with the usual definition of fair exchange?
- How can theory help improve the definitions?

- What is fair exchange and how does it relate to e-commerce?
- What are the problems with the usual definition of fair exchange?
- How can theory help improve the definitions?
- What are the benefits of the refined definitions in practice?

What is fair exchange?

- Orders, goods and payment will be shipped electronically.
- The exchange of such items must be fair.
- $fair\ exchange\ problem = How\ exchange\ two\ items\ between\ parties$ A and B over an electronic network without either party suffering a disadvantage?
- Assumption: items can be fully validated.

Strong and Weak Fairness [Asokan 1998]

• strong fairness: "When the protocol has completed, A has B's item, or B has gained no additional information about A's item, and vice versa.

Strong and Weak Fairness [Asokan 1998]

- strong fairness: "When the protocol has completed, A has B's item, or B has gained no additional information about A's item, and vice versa.
- weak fairness: "Either strong fairness is achieved, or a correctly behaving node can prove to an arbiter that an unfair situation has occured."

Strong and Weak Fairness [Asokan 1998]

- strong fairness: "When the protocol has completed, A has B's item, or B has gained no additional information about A's item, and vice versa.
- weak fairness: "Either strong fairness is achieved, or a correctly behaving node can prove to an arbiter that an unfair situation has occured."

Distinction: inside/outside the exchange system

• Properties of systems are sets of traces.

- Properties of systems are sets of traces.
- Two main classes of properties [Lamport 1977]:

- Properties of systems are sets of traces.
- Two main classes of properties [Lamport 1977]:
 - * safety: "something bad will never happen"

- Properties of systems are sets of traces.
- Two main classes of properties [Lamport 1977]:
 - * safety: "something bad will never happen"
 - ★ liveness: "something good will eventually happen"

- Properties of systems are sets of traces.
- Two main classes of properties [Lamport 1977]:
 - * safety: "something bad will never happen"
 - * liveness: "something good will eventually happen"
- Rule of thumb: finitely refutable \Rightarrow safety.

Revisiting fairness

- Strong fairness is a safety property [Pagnia and Gartner 1999; Shmatikov and Mitchell 1999].
- What about weak fairness?

Revisiting fairness

- Strong fairness is a safety property [Pagnia and Gartner 1999; Shmatikov and Mitchell 1999].
- What about weak fairness?
 Is there a point in time where
 - 1. strong fairness is violated, and
 - 2. a party loses its ability to prove that it has been treated unfair?

Revisiting fairness

- Strong fairness is a safety property [Pagnia and Gärtner 1999;
 Shmatikov and Mitchell 1999].
- What about weak fairness?
 Is there a point in time where
 - 1. strong fairness is violated, and
 - 2. a party loses its ability to prove that it has been treated unfair?
- Answer "No" \Rightarrow weak fairness is liveness
- Answer "Yes" \Rightarrow weak fairness is safety

• Asokan's "weak fairness" as a liveness property.

- Asokan's "weak fairness" as a liveness property.
- Eventually an unfair situation is resolved within the system.

- Asokan's "weak fairness" as a liveness property.
- Eventually an unfair situation is resolved within the system.
- Necessary: additional assumptions about the parties.

- Asokan's "weak fairness" as a liveness property.
- Eventually an unfair situation is resolved within the system.
- Necessary: additional assumptions about the parties.
- In general: "eventual cooperation", achievable e.g. by
 - ★ Trusted Computing Environment [Wilhelm 1997],
 - ★ Security Kernel [Schneider 1998],
 - ★ Smartcards, . . .

New Fairness Definitions

Fairness	property	resolvable	remark
strong	safety	automatically	
eventually strong	liveness	automatically	additional as-
			sumptions
weak fairness	safety	outside of the	
		System	

• Use standard formal methods to verify fair exchange protocols.

- Use standard formal methods to verify fair exchange protocols.
 - \star E.g., strong fairness \Rightarrow safety property \Rightarrow invariance argument.

- Use standard formal methods to verify fair exchange protocols.
 - \star E.g., strong fairness \Rightarrow safety property \Rightarrow invariance argument.
- Strong fairness sometimes impossible:
 - ★ Identify additional assumptions and prove eventually strong fairness.

- Use standard formal methods to verify fair exchange protocols.
 - \star E.g., strong fairness \Rightarrow safety property \Rightarrow invariance argument.
- Strong fairness sometimes impossible:
 - ★ Identify additional assumptions and prove eventually strong fairness.
- Weak fairness: identify "sufficient evidence"

- Use standard formal methods to verify fair exchange protocols.
 - \star E.g., strong fairness \Rightarrow safety property \Rightarrow invariance argument.
- Strong fairness sometimes impossible:
 - ★ Identify additional assumptions and prove eventually strong fairness.
- Weak fairness: identify "sufficient evidence"
- Better: stay inside the system!

• Fair exchange plays an important role in e-commerce.

- Fair exchange plays an important role in e-commerce.
- Need formal definition of fairness to reach assurance on fair exchange protocols.

- Fair exchange plays an important role in e-commerce.
- Need formal definition of fairness to reach assurance on fair exchange protocols.
- New formal variants of Asokan's strong and weak fairness definitions.

- Fair exchange plays an important role in e-commerce.
- Need formal definition of fairness to reach assurance on fair exchange protocols.
- New formal variants of Asokan's strong and weak fairness definitions.
- Use theory to help clarify concepts in practice.
- Can use new definitions and standard formal methods to reach assurance on correctness of fair exchange protocols.

Acknowledgements

Slides produced using LaTEX and Klaus Guntermann's PPower4: http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/

References

- ASOKAN, N. 1998. Fairness in electronic commerce. Ph. D. thesis, University of Waterloo.
- LAMPORT, L. 1977. Proving the correctness of multiprocess programs. *IEEE Trans. Softw. Eng. 3*, 2 (March), 125–143.
- PAGNIA, H. AND GÄRTNER, F. C. 1999. On the impossibility of fair exchange without a trusted third party. Tech. Rep. TUD-BS-1999-02 (March), Darmstadt University of Technology, Department of Computer Science, Darmstadt, Germany.
- Schneider, F. B. 1998. Enforceable security policies. Technical Report TR98-1664 (Jan.), Cornell University, Department of Computer Science, Ithaca, New York.
- SHMATIKOV, V. AND MITCHELL, J. C. 1999. Analysis of a fair exchange protocol. In *Proc. FLoC Workshop on Formal Methods and Sec. Protocols* (Italy, July 1999).
- WILHELM, U. G. 1997. Cryptographically protected objects. A french version appeared in the Proceedings of RenPar'9, Lausanne, Switzerland, http://lsewww.epfl.ch/~wilhelm/CryPO.html.