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Athene: Godess of wisdom, guardian of arts and crafts (Keynote by Mike Morganti yesterday)
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“We are looking for software which also works in very large and very open distributed systems.”
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Observation in fault-free asynchronous systems

• Distributed computations in asynchronous systems.
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Observation in fault-free asynchronous systems

• Distributed computations in asynchronous systems.
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• Application and monitor processes.

• Application and control messages.

• Predicate detection: Lattice of consistent global states.

• Modalities possibly and definitely.
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Predicate detection in faulty asynchronous systems

• crash fault assumption = at most t processes simply stop executing steps.

• For the moment: restrict crash faults to application processes only (monitors
always stay alive).

• Predicate upi refers to functional state of pi.

• Can be used in predicates:

– Process pi crashed after 4th event: ¬upi ∧ eci = 4
– Every process either commits or crashes: ∀i : ¬upi ∨ commiti

• Idea: find suitable analogies to possibly and definitely for these types of
predicates.
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Implementable failure detection

• Every monitor must keep upi up to date (failure detection, discussed in detail
by Mikel Larrea yesterday).

• Can ensure eventual detection, but cannot avoid false suspicions.

• Terminology: failure detectors suspect and rehabilitate application processes.

• Best we can do: a non-crashing process is not permanently suspected [3].

• For observation purposes: add causality information to suspicions:

– “mj suspects pi after event ek on pi.”
– “mj rehabilitates pi after event ek on pi.”

• Assume: between two events at most one suspicion and rehabilitation.
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Lattice over extended state space

• Treat upi as a variable on pi.

• Suspicion/rehabilitation is a simple state change of pi (extended state space).

• Change of up in consistent states yields again consistent states.

• Lemma: Integration of suspicions/rehabilitations into state lattice yields new
lattice (over extended state space).

• Use this lattice for predicate detection.



7

Per monitor lattice

• Due to false suspicions monitors construct different state lattices.

• possibly/definitely not observer-invariant.
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Global failure detector semantics

• Problem: false suspicions.

• Solution: define “global” failure detector semantics.

• pi is (globally) suspected after ek iff . . .

– (pessimistic) ∃ a monitor which suspects pi after ek.
– (optimistic) ∀ monitors suspect pi after ek.

• Can define pessimistic and optimistic state lattice (union and intersection of all
monitor lattices).
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New modalities
• Given predicate ϕ on extended state space.

• negotiably(ϕ) holds iff possibly(ϕ) holds on pessimistic state lattice.

• discernibly(ϕ) holds iff definitely(ϕ) holds on optimistic state lattice.
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• Given predicate ϕ on extended state space.

• negotiably(ϕ) holds iff possibly(ϕ) holds on pessimistic state lattice.

• discernibly(ϕ) holds iff definitely(ϕ) holds on optimistic state lattice.

p1

p2

p1 p1

p2p2

m1 suspectsp1 after e0 m1 rehabilitatesp1 after e0

ϕ ≡
“p1 crashes when
p2 is inbetween

events 1 and2”



9

New modalities
• Given predicate ϕ on extended state space.

• negotiably(ϕ) holds iff possibly(ϕ) holds on pessimistic state lattice.

• discernibly(ϕ) holds iff definitely(ϕ) holds on optimistic state lattice.

p1

p2

p1 p1

p2p2

m1 suspectsp1 after e0 m1 rehabilitatesp1 after e0

ϕ ≡
“p1 crashes when
p2 is inbetween

events 1 and2”

ϕ ≡

(or both) execute

an event”

“either p1 or p2



10

Intuition behind new modalities

• Optimistic/pessimistic lattice can be understood in analogy to
optimistic/pessimistic network protocols:

– pessimistic: be careful all the time, take immediate action if something bad
has possibly happened.

⇒ use negotiably to trigger action.
– optimistic: go ahead without synchronization and hope for the best, deal with

conflicts only when necessary.
⇒ use discernibly to ignore spurious suspicions.

• Understandable in analogy to possibly/definitely :

– Safety requirement 2ϕ: take action if negotiably(¬ϕ) is detected.
– Liveness requirement 3ϕ: validated if discernibly(ϕ) is detected.
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Detection algorithms in a nutshell

• Let monitors causally broadcast their suspicions to all other monitors.

• Eventually all monitor lattices converge.

• Can then do possibly/definitely detection in observer invariant state lattices
(use standard algorithms).

• Problem: how know that there will be no “late” failure detector events arriving?

• Solution:

– Monitors piggyback coordinates of most recent global state they have seen:
per monitor stable region.

– Take intersection of all monitor regions: globally settled region.
– Steadily expand settled region, extract optimistic/pessimistic data and do

possibly/definitely detection on it.
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Settled region example
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Settled region example
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Settled region example
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Settled region example
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Advanced topics

• Algorithm works under assumption that no monitors fail.

• If monitors can fail, detection becomes harder:

– Can still detect negotiably without a stable region.
– Detection discernibly impossible, because accurate failure detection is needed.
– A weaker variant (t-discernably) can be detected at the price of having a

majority of correct monitors.
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Complexity and restricted predicates

• Complexity:

– general predicate detection is NP-complete [1].
– Our detection algorithms are only wrappers around possibility/definitely

detection.
– Study restricted classes of predicates.

• Perfect failure detectors available:

– No false suspicions.
– Optimistic/pessimistic lattice are the same.

• Perfect failure detectors and crash predicates:

– Predicates are stable.
– possibly=definitely → negotiably=discernibly
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Overview of results

• First work to deal with general predicates in faulty systems (only other work by
Garg and Mitchell [2] restricts the classes of predicates).

• Observation modalities negotiably and discernibly . . .

– do not solve all problems in crash-affected systems.
– reflect by their definition the inherent problem of crash failure detection.
– can be understood in analogy to possibly and definitely.
– can be detected in asynchronous systems, even if monitors may crash.

• Still a lot of work to do.
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