
1

Consistent Detection of Global Predicates
under a Weak Fault Assumption

Felix Gärtner and Sven Kloppenburg

Darmstadt University of Technology, Germany, felix@informatik.tu-darmstadt.de

Systeam Engineering, Darmstadt, Germany, sven@syseng.de



1

Consistent Detection of Global Predicates
under a Weak Fault Assumption

Felix Gärtner and Sven Kloppenburg

Darmstadt University of Technology, Germany, felix@informatik.tu-darmstadt.de

Systeam Engineering, Darmstadt, Germany, sven@syseng.de

Athene: Godess of wisdom, guardian of arts and crafts (Keynote by Mike Morganti yesterday)



2

“We are looking for software which also works in very large and very open distributed systems.”



3

Observation in fault-free asynchronous systems

• Distributed computations in asynchronous systems.

p1

p2



3

Observation in fault-free asynchronous systems

• Distributed computations in asynchronous systems.

p1

p2

m1

m2

• Application and monitor processes.

• Application and control messages.

• Predicate detection: Lattice of consistent global states.

• Modalities possibly and definitely.



4

Predicate detection in faulty asynchronous systems

• crash fault assumption = at most t processes simply stop executing steps.

• For the moment: restrict crash faults to application processes only (monitors
always stay alive).

• Predicate upi refers to functional state of pi.

• Can be used in predicates:

– Process pi crashed after 4th event: ¬upi ∧ eci = 4
– Every process either commits or crashes: ∀i : ¬upi ∨ commiti

• Idea: find suitable analogies to possibly and definitely for these types of
predicates.



5

Implementable failure detection

• Every monitor must keep upi up to date (failure detection, discussed in detail
by Mikel Larrea yesterday).

• Can ensure eventual detection, but cannot avoid false suspicions.

• Terminology: failure detectors suspect and rehabilitate application processes.

• Best we can do: a non-crashing process is not permanently suspected [3].

• For observation purposes: add causality information to suspicions:

– “mj suspects pi after event ek on pi.”
– “mj rehabilitates pi after event ek on pi.”

• Assume: between two events at most one suspicion and rehabilitation.



6

Lattice over extended state space

• Treat upi as a variable on pi.

• Suspicion/rehabilitation is a simple state change of pi (extended state space).

• Change of up in consistent states yields again consistent states.

• Lemma: Integration of suspicions/rehabilitations into state lattice yields new
lattice (over extended state space).

• Use this lattice for predicate detection.



7

Per monitor lattice

• Due to false suspicions monitors construct different state lattices.

• possibly/definitely not observer-invariant.

p1

p2

m1 suspectsp1

m1 rehabilitatesp1

p1 p1

p2

m1 m2

p2



8

Global failure detector semantics

• Problem: false suspicions.

• Solution: define “global” failure detector semantics.

• pi is (globally) suspected after ek iff . . .

– (pessimistic) ∃ a monitor which suspects pi after ek.
– (optimistic) ∀ monitors suspect pi after ek.

• Can define pessimistic and optimistic state lattice (union and intersection of all
monitor lattices).



9

New modalities
• Given predicate ϕ on extended state space.

• negotiably(ϕ) holds iff possibly(ϕ) holds on pessimistic state lattice.

• discernibly(ϕ) holds iff definitely(ϕ) holds on optimistic state lattice.

p1

p2

p1 p1

p2p2

m1 suspectsp1 after e0 m1 rehabilitatesp1 after e0



9

New modalities
• Given predicate ϕ on extended state space.

• negotiably(ϕ) holds iff possibly(ϕ) holds on pessimistic state lattice.

• discernibly(ϕ) holds iff definitely(ϕ) holds on optimistic state lattice.

p1

p2

p1 p1

p2p2

m1 suspectsp1 after e0 m1 rehabilitatesp1 after e0

ϕ ≡
“p1 crashes when
p2 is inbetween

events 1 and2”



9

New modalities
• Given predicate ϕ on extended state space.

• negotiably(ϕ) holds iff possibly(ϕ) holds on pessimistic state lattice.

• discernibly(ϕ) holds iff definitely(ϕ) holds on optimistic state lattice.

p1

p2

p1 p1

p2p2

m1 suspectsp1 after e0 m1 rehabilitatesp1 after e0

ϕ ≡
“p1 crashes when
p2 is inbetween

events 1 and2”

ϕ ≡

(or both) execute

an event”

“either p1 or p2



10

Intuition behind new modalities

• Optimistic/pessimistic lattice can be understood in analogy to
optimistic/pessimistic network protocols:

– pessimistic: be careful all the time, take immediate action if something bad
has possibly happened.

⇒ use negotiably to trigger action.
– optimistic: go ahead without synchronization and hope for the best, deal with

conflicts only when necessary.
⇒ use discernibly to ignore spurious suspicions.

• Understandable in analogy to possibly/definitely :

– Safety requirement 2ϕ: take action if negotiably(¬ϕ) is detected.
– Liveness requirement 3ϕ: validated if discernibly(ϕ) is detected.



11

Detection algorithms in a nutshell

• Let monitors causally broadcast their suspicions to all other monitors.

• Eventually all monitor lattices converge.

• Can then do possibly/definitely detection in observer invariant state lattices
(use standard algorithms).

• Problem: how know that there will be no “late” failure detector events arriving?

• Solution:

– Monitors piggyback coordinates of most recent global state they have seen:
per monitor stable region.

– Take intersection of all monitor regions: globally settled region.
– Steadily expand settled region, extract optimistic/pessimistic data and do

possibly/definitely detection on it.



12

Settled region example

p2

p1

p1

p2



12

Settled region example

p2

p1

p1

p2

m2 suspectsp2 after e2

at application time (2, 2)



12

Settled region example

p2

p1

p1

p2

m2 suspectsp2 after e2

at application time (2, 2)

after e1 at

m1 suspectsp2

aapplication time (3, 1)



12

Settled region example

p2

p1

p1

p2

m2 suspectsp2 after e2

at application time (2, 2)

after e1 at

m1 suspectsp2

aapplication time (3, 1)

nochange
to beexpected
regardingm2



12

Settled region example

p2

p1

p1

p2

m2 suspectsp2 after e2

at application time (2, 2)

after e1 at

m1 suspectsp2

aapplication time (3, 1)

nochange
to beexpected
regardingm2

nochange
to beexpected
regardingm1



12

Settled region example

p2

p1

p1

p2

m2 suspectsp2 after e2

at application time (2, 2)

after e1 at

m1 suspectsp2

aapplication time (3, 1)

nochange
to beexpected
regardingm2

nochange
to beexpected
regardingm1

settled region



13

Advanced topics

• Algorithm works under assumption that no monitors fail.

• If monitors can fail, detection becomes harder:

– Can still detect negotiably without a stable region.
– Detection discernibly impossible, because accurate failure detection is needed.
– A weaker variant (t-discernably) can be detected at the price of having a

majority of correct monitors.



14

Complexity and restricted predicates

• Complexity:

– general predicate detection is NP-complete [1].
– Our detection algorithms are only wrappers around possibility/definitely

detection.
– Study restricted classes of predicates.

• Perfect failure detectors available:

– No false suspicions.
– Optimistic/pessimistic lattice are the same.

• Perfect failure detectors and crash predicates:

– Predicates are stable.
– possibly=definitely → negotiably=discernibly



15

Overview of results

• First work to deal with general predicates in faulty systems (only other work by
Garg and Mitchell [2] restricts the classes of predicates).

• Observation modalities negotiably and discernibly . . .

– do not solve all problems in crash-affected systems.
– reflect by their definition the inherent problem of crash failure detection.
– can be understood in analogy to possibly and definitely.
– can be detected in asynchronous systems, even if monitors may crash.

• Still a lot of work to do.



16

References

[1] Craig M. Chase and Vijay K. Garg. Detection of global predicates: Techniques and their

limitations. Distributed Computing, 11(4):191–201, 1998.

[2] Vijay K. Garg and J. Roger Mitchell. Distributed predicate detection in a faulty environment.

In Proceedings of the 18th IEEE International Conference on Distributed Computing Systems

(ICDCS98), 1998.

[3] Vijay K. Garg and J. Roger Mitchell. Implementable failure detectors in asynchronous systems.

In Proc. 18th Conference on Foundations of Software Technology and Theoretical Computer

Science, number 1530 in Lecture Notes in Computer Science, Chennai, India, December 1998.

Springer-Verlag.

Acknowledgements

• Slides produced using “cutting edge” LATEX slide processor PPower4 by Klaus
Guntermann.

http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/

