Indiana Jones and . . .

Defining Redundancy In Search of the Holy Grail

An attempt to understand the Arora/Kulkarni fault-tolerance theory

Felix Gärtner

TU Darmstadt, Germany

(most of this work done with Hagen Völzer, HU Berlin)

Indiana Jones and . . .

Defining Redundancy In Search of the Holy Grail

An attempt to understand the Arora/Kulkarni fault-tolerance theory

Felix Gärtner

TU Darmstadt, Germany

(most of this work done with Hagen Völzer, HU Berlin)

Danger: Contains unproved theorems, but

Indiana Jones and . . .

Defining Redundancy In Search of the Holy Grail

An attempt to understand the Arora/Kulkarni fault-tolerance theory

Felix Gärtner

TU Darmstadt, Germany

(most of this work done with Hagen Völzer, HU Berlin)

Danger: Contains unproved theorems, but 100% pure Dagstuhl

Motivation

- Fault-tolerance is a complex field with lots of complicated mechanisms.
- Difficulty of teaching fault-tolerance to students or attracting researchers.
- 1998 work of Arora and Kulkarni [2]: theory of detectors and correctors.
- Nice framework to describe how things work in fault tolerance.
- Difficult to understand intricacies.

Motivation

- Fault-tolerance is a complex field with lots of complicated mechanisms.
- Difficulty of teaching fault-tolerance to students or attracting researchers.
- 1998 work of Arora and Kulkarni [2]: theory of detectors and correctors.
- Nice framework to describe how things work in fault tolerance.
- Difficult to understand intricacies.
- Offers nice explanation of the concept of *redundancy*.

Overview

- Preliminaries (states, traces, properties, programs, etc.) (5 slides)
- Fault models and fault-tolerant versions (4 slides)
- Safety, detectors and redundancy in space (4 slides)
- Liveness, correctors and redundancy in time (4 slides)
- Conclusions (1 slide)

States and Traces

- State set C (countable)
- State predicate φ over C: subset of C
- State transition over C: $(s, s') \in C \times C$
- Trace over C: non-empty infinite sequence $\sigma = s_0, s_1, s_2, \ldots$ of states from C

Properties

- Property over C: set of traces over C
- Safety property S:

 $\sigma \notin S \Rightarrow \exists \text{ prefix } \alpha \text{ of } \sigma \text{ s.t. } \forall \beta \text{ holds } \alpha \cdot \beta \notin S$

• Liveness property L:

 $\forall \text{ finite traces } \alpha \ \exists \beta \text{ s.t. } \alpha \cdot \beta \in L$

• Every property is the intersection of a safety property and a liveness property [1].

Programs and Liveness Assumptions

- Program $\Sigma = (C, I, T, A)$: state set C, initial states $I \subseteq C$, transitions $T \subseteq C \times C$, liveness assumption A
- Liveness assumption A for Σ : liveness property over C such that \forall finite traces α of $\Sigma \exists \beta$ s.t. $\alpha \cdot \beta \in A$ and $\alpha \cdot \beta$ is a trace of Σ
- Fairness assumptions are special forms of liveness assumptions.
- Extend finite traces to infinite traces by infinitely repeating final state.
- (C,I,T) define a safety property S. Property of $\Sigma{:}$ $prop(\Sigma)=S\cap A$

Specifications and Correctness

- Set X is fusion closed iff $\alpha \cdot s \cdot \beta \in X$ and $\gamma \cdot s \cdot \delta \in X$ implies $\alpha \cdot s \cdot \delta \in X$ and $\gamma \cdot s \cdot \beta \in X$
- Specification SPEC: fusion closed property
- Specifications can be made fusion closed using history variables.
- Σ satisfies SPEC: $prop(\Sigma) \subseteq SPEC$
- Σ violates SPEC: Σ not satisfies SPEC

Extensions of Programs

- Program $\Sigma_2 = (C_2, I_2, T_2, A_2)$ extends $\Sigma_1 = (C_1, I_1, T_1, A_1)$ iff
 - $-C_2 \supseteq C_1$
 - $-A_2 = A_1$
 - $prop(\Sigma_1) = prop(\Sigma_2)$

Fault Models

top

- T = set of all transition systems
- Fault model: function $F: \mathcal{T} \to \mathcal{T}$
- F((C, I, T, A)) = (C, I, T', A') with:
 - $-T \subseteq T'$
 - $A \subseteq A'$

Completeness of Fault Model

• Completeness theorem (unproved): "all" faulty behaviors can be implemented by some *F*.

Theorem. Given a transition system Σ , faulty behavior $P \supset prop(\Sigma)$ with no new initial states, then $\exists F \text{ s.t. } prop(F(\Sigma)) = P$.

• Proof idea: violate safety by adding transitions, violate liveness by (adding transitions and) weakening liveness assumption.

Fault-tolerant Versions

- Σ_2 is an *F*-tolerant version of Σ_1 for *SPEC* iff
 - Σ_2 extends Σ_1
 - Σ_1 satisfies SPEC
 - $F(\Sigma_1)$ violates SPEC
 - $F(\Sigma_2)$ satisfies SPEC

Fusion-Closure and Safety

• Fusion closure gives you a set of "bad transitions":

Lemma. If

- SSPEC is a fusion-closed safety specification,
- $-\Sigma = (C, I, T, A)$ violates SSPEC,
- all initial states of Σ maintain SSPEC

then \exists transitions $t \in T$ s.t. \forall traces σ of Σ holds t occurs in $\sigma \Rightarrow \sigma \notin SSPEC$

 \bullet Bad transitions (s,s^\prime) can be avoided iff s is a non-reachable program state.

Fault Models and Safety

Lemma. Take some fault model F. If

- *SSPEC* is a safety specification,
- $\Sigma = (C, I, T, A)$ satisfies SSPEC,
- $F(\Sigma)$ violates SSPEC

then F adds at least one transition to T.

- No need of fusion closure.
- Adding transitions sufficient to violate safety.

skip

Introducing Detectors

top

- A *detector* is a program module which detects whether a predicate is true on the system state.
- Detectors can be composed from smaller detectors.

Theorem. [3, p. 28] Detectors are sufficient for satisfying safety specifications.

Theorem. [3, p. 33] Fault-tolerant versions contain detectors.

Explanation of Detectors

Theorem. If Σ_2 is an *F*-tolerant version of Σ_1 for a safety specification SSPEC then C_2 contains non-reachable states.

- Detectors "cut away" *F*-reachable bad transitions.
- Notion of *state space redundancy*.

Definition. A program employs redundancy in space iff it contains non-reachable states.

Corollary. Redundancy in space necessary for safety (or: detectors contain redundancy in space).

Fault Models and Liveness

Lemma. (unproved) Take some fault model F. If

- LSPEC is a liveness specification,
- $\Sigma = (C, I, T, A)$ satisfies LSPEC,
- $F(\Sigma)$ violates LSPEC

then F(1) adds a transition to T or (2) adds traces to A.

• Example for (2): Violation of liveness can be caused by assuming weak fairness instead of strong fairness.

Restricting Liveness

Lemma. If

- LSPEC is a liveness specification of the form $\Diamond \Box \varphi$ and
- $\Sigma = (C, I, T, A)$ violates LSPEC

then \exists trace σ and a transition $t = (s, s') \in T$ such that $\varphi(s')$ holds and t occurs infinitely often

- Infinitely often leave φ -states.
- What about other forms of liveness?

Introducing Correctors

- A *corrector* is a program module which "brings" the system into a certain state.
- Correctors can be composed from smaller correctors.

Theorem. [3, p. 47] Correctors are sufficient for eventual satisfaction of a specification.

Theorem. [3, p. 51] Fault-tolerant versions for liveness specifications of the form $\Diamond \Box \varphi$ contain correctors.

Explanation of Correctors

Theorem. (unproved) If Σ_2 is an *F*-tolerant version of Σ_1 for liveness specification LSPEC of the form $\Diamond \Box \varphi$ then C_2 contains non-reachable states and T_2 contains non-reachable transitions.

- Correctors add transitions that "go to" φ -states.
- Notion of *time (or transition) redundancy*.

Definition. A program employs redundancy in time iff it contains non-reachable transitions.

Corollary. Redundancy in time necessary for satisfying $\Diamond \Box \varphi$ (or: correctors contain redundancy in time).

Conclusions

- Detector/corrector theory is complex.
- Offers nice framework to explain how things work in fault-tolerance.
- Offers possibility to formally define space and time redundancy.
- Future work:
 - Prove the theorems (???).
 - Introduce measures of "redundancy-ness" to compare protocols (???).

Conclusions

- Detector/corrector theory is complex.
- Offers nice framework to explain how things work in fault-tolerance.
- Offers possibility to formally define space and time redundancy.
- Future work:
 - Prove the theorems (???).
 - Introduce measures of "redundancy-ness" to compare protocols (???).
- . . . search for the holy grail continues. . .

References

- [1] Bowen Alpern and Fred B. Schneider. Defining liveness. *Information Processing Letters*, 21:181–185, 1985.
- [2] Anish Arora and Sandeep S. Kulkarni. Component based design of multitolerant systems. *IEEE Transactions on Software Engineering*, 24(1):63–78, January 1998.
- [3] Sandeep S. Kulkarni. Component Based Design of Fault-Tolerance. PhD thesis, Department of Computer and Information Science, The Ohio State University, 1999.

Acknowledgements

• Slides produced using "cutting edge" LATEX slide processor PPower4 by Klaus Guntermann.