
1

Indiana Jones and . . .

Defining Redundancy

In Search of the Holy Grail

An attempt to understand
the Arora/Kulkarni fault-tolerance theory

Felix Gärtner

TU Darmstadt, Germany

(most of this work done with Hagen Völzer, HU Berlin)

http://www.informatik.tu-darmstadt.de/BS/Gaertner/tmp/raiders.au


1

Indiana Jones and . . .

Defining Redundancy

In Search of the Holy Grail

An attempt to understand
the Arora/Kulkarni fault-tolerance theory

Felix Gärtner

TU Darmstadt, Germany

(most of this work done with Hagen Völzer, HU Berlin)

Danger: Contains unproved theorems, but

http://www.informatik.tu-darmstadt.de/BS/Gaertner/tmp/raiders.au


1

Indiana Jones and . . .

Defining Redundancy

In Search of the Holy Grail

An attempt to understand
the Arora/Kulkarni fault-tolerance theory

Felix Gärtner

TU Darmstadt, Germany

(most of this work done with Hagen Völzer, HU Berlin)

Danger: Contains unproved theorems, but

100% pure Dagstuhl

http://www.informatik.tu-darmstadt.de/BS/Gaertner/tmp/raiders.au


2

Motivation

• Fault-tolerance is a complex field with lots of complicated

mechanisms.

• Difficulty of teaching fault-tolerance to students or attracting

researchers.

• 1998 work of Arora and Kulkarni [2]: theory of detectors and

correctors.

• Nice framework to describe how things work in fault tolerance.

• Difficult to understand intricacies.



2

Motivation

• Fault-tolerance is a complex field with lots of complicated

mechanisms.

• Difficulty of teaching fault-tolerance to students or attracting

researchers.

• 1998 work of Arora and Kulkarni [2]: theory of detectors and

correctors.

• Nice framework to describe how things work in fault tolerance.

• Difficult to understand intricacies.

• Offers nice explanation of the concept of redundancy.



3

Overview

• Preliminaries (states, traces, properties, programs, etc.)

(5 slides)

• Fault models and fault-tolerant versions (4 slides)

• Safety, detectors and redundancy in space (4 slides)

• Liveness, correctors and redundancy in time (4 slides)

• Conclusions (1 slide)



4

States and Traces

top

• State set C (countable)

• State predicate ϕ over C: subset of C

• State transition over C: (s, s′) ∈ C × C

• Trace over C: non-empty infinite sequence σ = s0, s1, s2, . . . of

states from C



5

Properties

• Property over C: set of traces over C

• Safety property S:

σ 6∈ S ⇒ ∃ prefix α of σ s.t. ∀β holds α · β 6∈ S

• Liveness property L:

∀ finite traces α ∃β s.t. α · β ∈ L

• Every property is the intersection of a safety property and a liveness

property [1].



6

Programs and Liveness Assumptions

• Program Σ = (C, I, T,A): state set C, initial states I ⊆ C,

transitions T ⊆ C × C, liveness assumption A

• Liveness assumption A for Σ: liveness property over C such that

∀ finite traces α of Σ ∃β s.t. α · β ∈ A and α · β is a trace of Σ

• Fairness assumptions are special forms of liveness assumptions.

• Extend finite traces to infinite traces by infinitely repeating final

state.

• (C, I, T ) define a safety property S. Property of Σ: prop(Σ) =
S ∩A



7

Specifications and Correctness

• Set X is fusion closed iff α · s · β ∈ X and γ · s · δ ∈ X implies

α · s · δ ∈ X and γ · s · β ∈ X

• Specification SPEC : fusion closed property

• Specifications can be made fusion closed using history variables.

• Σ satisfies SPEC : prop(Σ) ⊆ SPEC

• Σ violates SPEC : Σ not satisfies SPEC



8

Extensions of Programs

• Program Σ2 = (C2, I2, T2, A2) extends Σ1 = (C1, I1, T1, A1) iff

– C2 ⊇ C1

– A2 = A1

– prop(Σ1) = prop(Σ2)

* *
a b c a b c

d



9

Fault Models

top

• T = set of all transition systems

• Fault model: function F : T → T

• F ((C, I, T,A)) = (C, I, T ′, A′) with:

– T ⊆ T ′
– A ⊆ A′

* *
a b c a b c

F (Σ)Σ



10

Completeness of Fault Model

• Completeness theorem (unproved): “all” faulty behaviors can be

implemented by some F .

Theorem. Given a transition system Σ, faulty behavior P ⊃
prop(Σ) with no new initial states, then ∃F s.t. prop(F (Σ)) = P .

• Proof idea: violate safety by adding transitions, violate liveness by

(adding transitions and) weakening liveness assumption.



11

Fault-tolerant Versions

• Σ2 is an F -tolerant version of Σ1 for SPEC iff

– Σ2 extends Σ1

– Σ1 satisfies SPEC
– F (Σ1) violates SPEC
– F (Σ2) satisfies SPEC

d e d e

* *
a b c a b c

Σ1 F (Σ1)

d e

* *
a b c a b c

Σ2 F (Σ2)

d e



12

Fusion-Closure and Safety

top

• Fusion closure gives you a set of “bad transitions”:

Lemma. If

– SSPEC is a fusion-closed safety specification,

– Σ = (C, I, T,A) violates SSPEC,

– all initial states of Σ maintain SSPEC

then ∃ transitions t ∈ T s.t. ∀ traces σ of Σ holds t occurs in σ ⇒
σ 6∈ SSPEC

• Bad transitions (s, s′) can be avoided iff s is a non-reachable

program state.



13

Fault Models and Safety
skip

Lemma. Take some fault model F . If

• SSPEC is a safety specification,

• Σ = (C, I, T,A) satisfies SSPEC,

• F (Σ) violates SSPEC

then F adds at least one transition to T .

• No need of fusion closure.

• Adding transitions sufficient to violate safety.



14

Introducing Detectors

top

• A detector is a program module which detects whether a predicate

is true on the system state.

• Detectors can be composed from smaller detectors.

Theorem. [3, p. 28] Detectors are sufficient for satisfying safety

specifications.

Theorem. [3, p. 33] Fault-tolerant versions contain detectors.



15

Explanation of Detectors

Theorem. If Σ2 is an F -tolerant version of Σ1 for a safety

specification SSPEC
then C2 contains non-reachable states.

• Detectors “cut away” F -reachable bad transitions.

• Notion of state space redundancy.

Definition. A program employs redundancy in space iff it contains

non-reachable states.

Corollary. Redundancy in space necessary for safety (or: detectors

contain redundancy in space).



16

Fault Models and Liveness

top

Lemma. (unproved) Take some fault model F . If

• LSPEC is a liveness specification,

• Σ = (C, I, T,A) satisfies LSPEC,

• F (Σ) violates LSPEC

then F (1) adds a transition to T or (2) adds traces to A.

• Example for (2): Violation of liveness can be caused by assuming

weak fairness instead of strong fairness.



17

Restricting Liveness

Lemma. If

• LSPEC is a liveness specification of the form 32ϕ and

• Σ = (C, I, T,A) violates LSPEC

then ∃ trace σ and a transition t = (s, s′) ∈ T such that ϕ(s′) holds

and t occurs infinitely often

• Infinitely often leave ϕ-states.

• What about other forms of liveness?



18

Introducing Correctors

• A corrector is a program module which “brings” the system into a

certain state.

• Correctors can be composed from smaller correctors.

Theorem. [3, p. 47] Correctors are sufficient for eventual satisfaction

of a specification.

Theorem. [3, p. 51] Fault-tolerant versions for liveness specifications

of the form 32ϕ contain correctors.



19

Explanation of Correctors

Theorem. (unproved) If Σ2 is an F -tolerant version of Σ1 for

liveness specification LSPEC of the form 32ϕ

then C2 contains non-reachable states and T2 contains non-reachable

transitions.

• Correctors add transitions that “go to” ϕ-states.

• Notion of time (or transition) redundancy.

Definition. A program employs redundancy in time iff it contains

non-reachable transitions.

Corollary. Redundancy in time necessary for satisfying 32ϕ (or:

correctors contain redundancy in time).



20

Conclusions
top

• Detector/corrector theory is complex.

• Offers nice framework to explain how things work in fault-tolerance.

• Offers possibility to formally define space and time redundancy.

• Future work:

– Prove the theorems (???).

– Introduce measures of “redundancy-ness” to compare protocols

(???).



20

Conclusions
top

• Detector/corrector theory is complex.

• Offers nice framework to explain how things work in fault-tolerance.

• Offers possibility to formally define space and time redundancy.

• Future work:

– Prove the theorems (???).

– Introduce measures of “redundancy-ness” to compare protocols

(???).

• . . . search for the holy grail continues. . .



21

References

[1] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21:181–185, 1985.

[2] Anish Arora and Sandeep S. Kulkarni. Component based design of multitolerant
systems. IEEE Transactions on Software Engineering, 24(1):63–78, January
1998.

[3] Sandeep S. Kulkarni. Component Based Design of Fault-Tolerance. PhD thesis,
Department of Computer and Information Science, The Ohio State University,
1999.

Acknowledgements

• Slides produced using “cutting edge” LATEX slide processor PPower4

by Klaus Guntermann.

http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/

