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ABSTRACT
Event-based systems are developed and used as a coordi-
nation model to integrate components in loosely coupled
systems. Research and product development focused so far
on efficiency issues but neglected methodological support
to build such systems. In this paper, we present the mod-
ular design and implementation of an event system which
supports scopes and event mappings, two new and pow-
erful structuring methods that facilitate engineering and
coordination of components in event-based systems. The
approach is based on a trace-based specification method
adapted from temporal logic.

1. INTRODUCTION
Proliferation of computer networks led to increasingly

complex information systems which are built out of het-
erogeneous, autonomous components. In such systems,
computations are physically and logically distributed and
have to be coordinated in order to reach a common goal.
Different coordination models have been proposed in the
literature, all of which try to integrate a number of com-
ponents, but not all of them are scalable. For example, it
was criticized that race conditions are possible in Linda [9]
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and its variants, resulting from the inherent concurrency
of the model [2].

The model of event-based systems is increasingly often
used in order to achieve scalability. In this model, the inte-
grated components are only loosely coupled. Processes can
act both as producers and consumers of events. Produc-
ers publish notifications about internal events but do not
address any specific (set of) receivers. On the other hand,
consumers specify the kind of data they want to receive
by subscriptions, e.g., they subscribe by type or content of
the transmitted notification. Publish/subscribe techniques
directly implement this approach [15].

Specification of event-based systems.
There exist a considerable amount of work on event-based
systems, and many concrete systems have been designed
and implemented (e.g., Siena [5], etc.). Unfortunately, it is
very difficult to compare these systems because of different
or informal semantics. For example, in the Siena system
[5], Carzaniga, Rosenblum and Wolf make a good effort at
defining the semantics of subscription mechanisms. How-
ever, timing issues are explicitly excluded from the spec-
ification; delivery is “best effort.” Processes are required
to accommodate to race conditions; notifications may be
delivered after cancellation of the respective subscriptions.
No reasoning about any timing issues is possible according
to the given specification. In most other systems, practi-
tioner’s approaches dominate and at most the formal se-
mantics of the subscription languages are given [3], ne-
glecting the semantics of the event service itself.

In other related work which follows the Actors paradigm
[1], a pattern-oriented broadcasting mechanism is used,
which is called implicit invocation in software engineer-
ing [8]. A formal specification of implicit invocation sys-
tems is presented in [6]. It may also be used to describe
event-based systems, but only a static, predetermined bind-
ing of messages/notifications to methods is used, and the
important aspect of dynamic subscriptions is excluded.

One of the contributions of this paper is that we provide
a completely formal specification of the semantics of differ-
ent types of event systems. The specifications are given us-
ing standard approaches from distributed algorithms, i.e.,
the specification language is adapted from temporal logic



[13] and the specification itself is divided into safety and
liveness conditions [12].

Structuring of event-based systems.
The event paradigm is a special kind of coordination model
which is build around a shared data space, like Linda
[9]. In comparison with Linda, the components are more
loosely coupled, facilitating distributed deployment of in-
dependent components, but on the other hand, also com-
plicating engineering of event-based systems. In order to
cope with the inherent complexity, efficient abstractions
are necessary like they are known in other areas of com-
puter science. Former work on event-based systems, how-
ever, concentrated on the efficiency of implementation is-
sues, disregarding the needs to facilitate coordination and
engineering issues. The notion of visibility has proven to
provide helpful abstractions in structuring complex sys-
tems. Information hiding [16] and transaction process-
ing [10] are good and accepted examples of how complexity
can be reduced by restricting the visibility of components
and their actions.

We introduce the notion of scopes in event-based sys-
tems. A scope bundles a set of producers and consumers
and delimits the visibility of published events. Scopes may
republish internal events and forward external events to its
members, and thus a scope may be viewed as a producer
and consumer. It can recursively be a member of other
scopes, offering a powerful structuring mechanism.

Only a limited amount of initial work exists in the area of
structuring event-based systems. The READY event no-
tification service offers event zones as administrative do-
mains [11]. They are used to bundle sets of ‘specifica-
tions’ (subscriptions and actions) or consumers in order to
provide an uniform management interface. Research on
Linda-like systems investigated structures of components.
Agha and Callsen propose ActorSpaces to limit the dis-
tribution of messages [2]. The basic drawback of their
approach is that even though previously unknown objects
are intended to cooperate senders have to specify desti-
nation addresses. The sketched implementation is rather
limited. In [14], Merrick and Wood introduce scopes to
limit the visibility of tuples in Linda, but again, senders
have to specify destination scopes. Furthermore, nesting
of scopes is restricted to two levels.

In large systems, delimiting of the visibility of notifica-
tions may not be sufficient because of heterogeneity issues
and different administrative domains where syntax and se-
mantics of events differ. It is most likely not possible to use
one event model in the entire system. Different parts will
use different representations and semantics of the trans-
mitted events. The scoped event system model is extended
to include event mappings, i.e., a possibility to transform
events when crossing scope boundaries. Generalized scope
interfaces are offered that leverage construction and main-
tenance of large systems.

The READY system [11] uses a similar mapping facil-
ity located in boundary routers connecting otherwise in-
dependent domains. However, in this way they operate on
a rather coarse and static granularity. There exist some
work on semantical mappings in the data management lit-
erature, which partly focuses on events [4, ?].

In this paper, we present the design of an event system
which supports scopes and event mappings. We proceed in
three steps: The first step (described in Section 2) presents
a precise specification of a simple event system and gives
a possible distributed implementation. The offered se-
mantics are similar to the basic functionality of existing
event systems like Siena. In the second step (presented in
Section 3), we refine the specification of the simple event
system to include scopes, and present an implementation
which is built around a simple event system. In the third
and final step (detailed in Section 4), the semantics of a
scoped event system are extended to deal with event map-
pings. We present an implementation, which exploits the
fact that we have already implemented an event system
with scopes in the second step. The modular approach to
building event systems has many evident advantages. For
example, it makes the task of building a complex event
system much easier because different concerns are han-
dled separately in an incremental fashion. Furthermore,
in conjunction with exact specifications it allows to deal
with issues of correctness more easily. Due to lack of space
correctness proofs can be found elsewhere [?].

2. SIMPLE EVENT-BASED SYSTEMS
In this section, we specify a simple event-based systems

and show how to implement it.

2.1 Specification
A simple event system can be viewed as a transport

mechanism for event notifications. Informally, components
interacting with the event system signal event occurrences
by invoking the pub operation of the system with the notifi-
cation data describing this event as parameter. We further
assume that notifications are unique in that they are dis-
tinguishable by some identifier, i.e., two consecutive pub
operations with identical notification data result in send-
ing two different notifications. The notification is conveyed
by the event system and delivered to all connected compo-
nents via an output operation called notify . Components
register their interest in specific kinds of events by issuing
subscriptions via the sub operation. This operation takes
a filter (i.e., an event selector) as parameter, and every de-
livered event must match such a subscription filter. Each
subscription must be revoked individually and separately
by using the unsub operation. Otherwise, computability
issues arise concerning matching and subtracting of filters
in the specific subscription language.

Formally, the event-based system is viewed as a black
box with an interface (see Figure 1). A set of clients inter-
act with the system by invoking input operations pub, sub
and unsub. The system can asynchronously notify a client
by invoking an output operation notify . All these opera-
tions take parameters from different domains: the set of
all clients C, the set of all notifications N , and the set of
all filters F . Formally, a filter F ∈ F is a mapping from
N to the boolean values true and false. We say that a
notification n matches a filter F iff (if and only if) F (n) is
true, where N(F ) denotes the set of all notifications that
match F : N(F ) = {n |F (n) = true} ⊆ N .

We specify the behavior of the event system by solely
looking at its interface. We think of the interface as a
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Figure 1: Black box view of an event system.

set of variables. A state of the interface is an assignment
of values to these variables. Invoking operations at the
interface results in atomic state changes so that individual
behaviors of the system can be described as a sequence of
states interleaved with operation names. We call such a
sequence a trace of the system. For example, the trace

σ1 = s1, sub(X,F ), s2, pub(Y, n), s3,notify(X,n), s4, . . .

describes that in the initial state s1 component X sub-
scribes to a filter F . After that, in the resulting state s2,
component Y publishes a notification n, which in turn re-
sults in state s3. The next state s4 results from component
X receiving the notification of n, and so on.

Note that the trace does not say anything about the
exact “real-time” instances of when the operations are in-
voked, so our model reduces time to the relative ordering
of operations within a trace. Note also that the trace does
not require that n matches F . In fact, we can define a lot
of useless traces. For example, the trace

σ2 = s1, unsub(X,F ), s2,notify(Y, n), s3, . . .

describes that X unsubscribes to a filter it has never sub-
scribed to and that Y receives a notification although it
never subscribed to anything. The task now is to find
suitable restrictions on the set of all traces that resemble
exactly what we expect an event system to do (e.g., that a
delivered notification must match a previous subscription).

Let σ = s1, op1, s2, op2, s3, . . . be a trace. For every op-
eration op of the event system we define a predicate Op
on traces in the following way: Op(σ) = true iff op1 = op,
i.e., the predicate holds if the operation is the first one in
the trace. For example, the predicate Sub(X,F ) holds for
example trace σ1 above. The formal language we use to
specify sets of traces is built from the above predicates,
the logical operators ∨, ∧, ⇒, ¬ and the “temporal” op-
erators 2 (“always”) and 3 (“eventually”) which we bor-
row from temporal logic [13]. For example, the formula
¬Sub(X,F ) is true for a trace σ iff the first operation in σ
is not sub(X,F ). The semantics of the temporal operators
is defined as follows: Let Ψ be an arbitrary formula. Then

• 3Ψ is true for trace σ iff there exists an i such that
Ψ is true for the trace si, opi, si+1, opi+1, si+2, . . .

• 2Ψ is true for trace σ iff for all i Ψ is true for the
trace si, opi, si+1, opi+1, si+2, . . .

Intuitively, 3Ψ means that Ψ will hold eventually, i.e.,
there exists a point in the trace at which Ψ holds. For
example, 3Notify(X,n) specifies all traces in which com-
ponent X eventually is notified about n. On the other
hand, 2Ψ means that Ψ always holds, i.e., for all “future”
points in the trace Ψ holds. For example, 2¬Unsub(X,F )
specifies all traces in which X never unsubscribes to F .

In our formalization we assume that a set of specifica-
tion variables is part of the interface. Specification vari-
ables are fictitious devices which are sometimes necessary
to keep track of the internal history of the system within
a specification. For example, if a component should never
unsubscribe a filter to which it has not subscribed before,
we need a way of telling what filters it is subscribing to in a
given state. We assume three sets of specification variables
at the interface: For every component X ∈ C we postulate

1. a set SX of active subscriptions (i.e., filters to which
X has subscribed and not unsubscribed yet),

2. a set PX of published notifications (i.e., the subset of
N containing all notifications previously published
by X), and

3. a multiset DX of delivered notifications (i.e., all noti-
fications which have been delivered to X). A multiset
is a set where identical elements can occur more than
once. A special operation #(M, e) is available giving
the number of occurrences of element e in multiset
M .

We assume that these specification variables are initially
empty and that they are updated by the system faithfully,
e.g., whenever X subscribes to F it adds F to SX . This
makes it possible to formalize trivial well-formedness prop-
erties like that a component may only unsubscribe a filter
to which it has currently subscribed, or that it may sub-
scribe only to a filter which it has not currently subscribed.

Now we are ready to specify the behavior of a simple
event system. Arguably, it captures only minimal require-
ments, however intuitive semantics is covered and it rep-
resents a basis for further refinements.

Definition 1. A simple event system is a system that
exhibits only traces so that every state satisfies the follow-
ing requirements:

Safety: #(DY , n) ≤ 1

∧
(
Notify(Y, n)⇒
∃X ∃F ∈SY : n∈PX ∧ n∈N(F )

)
and

Liveness: Sub(Y, F )⇒
32
(
Pub(X,n) ∧ n∈N(F )⇒ 3Notify(Y, n)

)
∨
(
3Unsub(Y, F )

)
The safety condition states that no “wrong” events are

notified to a component, i.e., events are delivered at most
once, have been published sometime in the past, and the
component must have an active subscription for them.



This condition has appeared in the same spirit in the lit-
erature [5] and is easily justified.

The liveness condition describes precisely under which
conditions a notification must be delivered. The condition
can be rephrased as follows: If a component Y subscribes
to F , then there exists a future point in time where the
publication of a notification n that matches F will lead to
a delivery of n to Y . This can only be circumvented by Y
unsubscribing to F .

For example, trace σ1 above satisfies both safety and
liveness conditions while σ2 violates the wellformedness
conditions stated above. As additional examples, consider
the following traces where F is a filter and ni are notifica-
tions matching F while n′ is a notification not matching
F (the intermediate states are omitted for brevity):

σ3 = sub(Y, F ), pub(X,n1),notify(Y, n′)

σ4 = pub(X,n), sub(Y, F ), unsub(Y, F ),notify(Y, n)

σ5 = sub(Y, F ), pub(X,n1), pub(X,n2), pub(X,n3), . . .

Traces σ3 and σ4 violate the safety requirement because a
notification is delivered to Y that does not match an active
subscription. In trace σ5 component Y subscribes to F and
component X starts to publish a continuous sequence of
notifications matching F . Since there is no notification
in σ5 it perfectly satisfies safety. However, it violates the
liveness requirement (to satisfy liveness, there must be a
point in the trace following the subscription where either
Y unsubscribes to F or Y begins to receive notifications).

Intuitively, the liveness requirement states that any fi-
nite processing delay of a subscription is acceptable. By
abstracting away from real time we obtain a concise and
unambiguous characterization of what types of actions must
be produced by the system under which conditions. For
example, if a component has subscribed to a filter F and
later unsubscribes to it, the system does not have to no-
tify the component about any events which match F and
are published in the meantime. It may nevertheless do so,
but only as long as the other requirement of Definition 1 is
met. On the other hand, delivery of an event is only nec-
essary if the component continuously remains subscribed
to F . Because the system cannot tell the future, it must
still make a good effort to prepare delivery even though
the component may later unsubscribe to F .

2.2 Implementation
We now show how to implement the specification of a

simple event system from Section 2.1. We base all our im-
plementations in this paper on a system model where a
set of asynchronous processes communicate over message
passing channels. The channels are assumed to be reli-
able, i.e., no messages are lost or altered and no spurious
messages are delivered, and incoming data is served in a
fair manner. For simplicity, the communication topology
is assumed to be acyclic and connected (see Figure 2).

In the context of an event system, we call a process an
event broker. To invoke the interface operations of the
event system, every client invokes a form of local library
function causing messages to be inserted into the system.
This means that the client process can be considered to be
an event broker (see Figure 2). For every client C we call
this event broker the local event broker of C.

We note that there can be many different implementa-
tions of Definition 1, especially ones that are more efficient
than ours. The purpose of this section is merely to show
the possibility of implementing the specification and show-
ing that our specification facilitates correctness arguments.

2.2.1 Data Structures
Every local event broker holds two data structures:

1. a table S of active subscriptions, and

2. a table D of previously delivered events.

Both are initially empty.

2.2.2 Algorithm
If a client invokes sub(X,F ), the local event broker of X

adds F to S. Conversely, if unsub(X,F ) is invoked, F is
removed from S. Events are processed within the system
by a technique called flooding. An invocation of pub(X,n)
causes sending a message containing n to the neighbor of
the local event broker in the network. If any (non-local)
event broker receives such a message, it forwards it to all
neighbors except the one the message was received from.
A local event broker (say of client Y ) receiving such a
message checks if there exists a filter F in SY such that n
matches F . If so, it checks whether n is already present in
DY . If one of these checks fails, it discards n. Otherwise
n is added to DY and delivered to the client via a call to
notify(Y, n).

Event broker

Local event broker

Client

Figure 2: A possible implementation view of a sim-
ple event system.

3. EVENT-BASED SYSTEMS WITH
SCOPES

We extend the specification of the simple event system
presented in Section 2.1 and introduce the notion of scopes.
For presentation purposes, we restrict our attention to
static scopes, i.e., the scope hierarchy and membership can-
not change once the first event has been published. This
restriction is softened in Section 3.2.

3.1 Specification
A scope bundles a set of producers and consumers in or-

der to utilize locality, to hide “internal” configurations, or
to delimit administrative domains. The visibility of pub-
lished events is restricted by the scopes and their compo-
sition.
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To deal with scopes, we need an additional specifica-
tion variable G which keeps track of the current scopes in
the system. Formally, G = (C,E) is a directed acyclic
graph that signifies the superscope/subscope relationship
between components and scopes (see Figure 3). We extend
the notion of a component to be either a simple compo-
nent from C or a scope from a set S of all possible scopes
and define the set K of complex components to be S ∪ C.
The nodes C of G are a subset of K and the edges E are
a binary relation over K. An edge from node c1 to c2 in
G stands for c2 being a superscope of c1. Next to being
acyclic, the relation E must also satisfy the property that
a simple component cannot be a superscope of any node in
G. As noted above, we assume here that scopes are static,
i.e., the scope graph does not change once the first event
is published.

Using G, we define the visibility of components as a re-
flexive, symmetric relation v over K. Informally, compo-
nent X is visible to Y iff X and Y “share” a common
superscope. For a component X, let super(X) denote the
set of components that are superscopes of X. Formally,
we recursively define

v(X,Y )⇔ X = Y

∨ v(Y,X)

∨ v(X ′, Y ) with X ′ ∈ super(X)

In the graph in Figure 3 for example, v(X,Y ) holds but
not v(X,Z).

Definition 2. A scoped event system is a system that
exhibits only traces so that every state satisfies the follow-
ing requirements:

Safety: #(DY , n) ≤ 1

∧
[
Notify(Y, n)⇒

∃X. ∃F ∈SY.
(
n ∈ PX

)
∧
(
n ∈ N(F )

)
∧ v(X,Y )

]
Liveness: Sub(Y, F )⇒

3

(
2v(X,Y )⇒ 2

[
Pub(X,n) ∧ n ∈ N(F )⇒

3Notify(Y, n′)
])

∨ 3Unsub(Y, F )

We elaborate on how Definition 2 differs from Defini-
tion 1. The safety requirement contains an additional con-

junct v(X,Y ). This means that in addition to the previous
conditions, the publisher and the subscriber must also be
visible to each other when a notification is delivered. The
liveness requirement has an additional precondition that
can be understood in the following way: If component Y
subscribes to F , then there is a future point in the trace
such that if X remains visible to Y , every publishing of a
matching event will lead to the delivery of the correspond-
ing notification.

Note that Definition 2 is a generalization of Definition 1.
A simple event system can be viewed as a system in which
all components belong to the same “global” scope. This
implies a “global visibility”, i.e., v(X,Y ) holds for all pairs
of components (X,Y ) and can be replaced by the logical
value true in the formulas of Definition 2, resulting in Def-
inition 1.

3.2 Dynamic Scopes
In Definition 2 we have assumed a static scope hierar-

chy. The case of dynamic scopes is however not so different
from the static case. As in other open systems that sup-
port reconfiguration at runtime, we assume the role of a
manager who is responsible for arranging scopes and com-
ponents. The individual components do not necessarily
need to know about their scope membership; according to
the event-based paradigm, they concentrate on the tasks
they have to accomplish. To the manager, four additional
operations are offered: cscope(S) and dscope(S) to create
and destroy a scope S, jscope(X,S) and lscope(X,S) are
used to join X to scope S or leave it, respectively. A sys-
tem with static scopes can then be simulated by having the
manager set up the scope hierarchy with the appropriate
operations before clients start to publish and subscribe.

However, for the dynamic case, a problem arises when
trying to implement Definition 2: A notification n may
only be delivered to Y if the publisher X of n is visible to
Y . But because X may “spontaneously” leave the scope
before delivery, Y must double check that X is still visible
at this point to ensure safety. In the worst case, X has to
be blocked until n is delivered, which is unfavorable.

There are two possibilities to solve this problem. The
first is to postulate that a client may only leave a scope if
all of its published notifications have been delivered. Un-
der this assumption, Definition 2 makes sense with dy-
namic scopes, too. The second possibility is to weaken the
definition and allow the delivery of a notification if pub-
lisher and receiver were visible at the time the notification
was published. Since this substantially changes the safety
semantics we have chosen not to pursue this direction here.
A discussion of the different possibilities is left for future
work.

Note that the liveness part of Definition 2 is perfectly
compliant to dynamic scopes.

3.3 Implementation
We present a possible implementation of the previous

specification which uses a simple event system as a basic
transport mechanism. This modular approach underlines
the system’s structure and shows the possibility of imple-
menting the specification, but again, it does not concen-
trate on efficiency issues.
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Figure 4: A possible implementation of a scoped
event system.

The architecture of the implementation is sketched in
Figure 4. The interface operations of the scoped event sys-
tem are local library calls which are mapped to appropriate
messages of the underlying distributed system. Again we
call the part of the client process which handles these calls
the local event broker of that client. Furthermore, for ev-
ery client there is an additional process at the interface of
the simple event system which we call the client’s proxy.

Although we do not deal with dynamic scopes here, the
presented algorithm can easily be extended to include dy-
namic scopes as of Section 3.2. This restriction resem-
bles an object-oriented programming approach where new
subclasses and new methods are readily added, but mod-
ifying the inheritance hierarchy is complicated (and for-
bidden here). To simplify the implementation, we restrict
the changes which can be made to the graph G = (C,E)
of scopes: Only components with no incoming edges may
join or leave scopes. This restriction implies that individ-
ual brokers do not need to store G completely, as we now
explain.

The scope hierarchy expressed by edges E describes a
transitive partial order≤ on C, whereX ≤ X ′ ⇔ (X,X ′) ∈
E. The maximal elements of C have no outgoing edges,
i.e., they have no superscopes. These elements are termed
visibility roots because the recursive definition of v(X,Y )
is terminated by common superscopes. The maximal ele-
ments that are visible from a component are used to de-
termine visibility of events.

3.3.1 Data Structures
For every client X, its proxy ProxX holds a list VX of

its visibility roots. In a system with static scopes, VX is
initialized to the set of its visibility roots in the given scope
graph. With dynamic scopes where changes are limited
to the addition of new leaves—nodes with no incoming
edges—VX is set at the time of addition. In both cases,
it remains constant and is not changed until the whole
systems stops or X is deleted, respectively.

3.3.2 Algorithm
If a client invokes pub(X,n), a message (pub, X, n) is

sent to the client’s proxy. At the interface of the simple

event system, the proxy then invokes pub(ProxX , (n,R)),
where R is set to the constant value VX .

Calls to sub(X,F ) and unsub(X,F ) are sent in a similar

way to ProxX . Using F , the proxy derives a filter F̃ that
matches all notifications ñ = (n,R) for which n matches

F , and subsequently calls sub(ProxX , F̃ ).
Whenever the simple event system notifies the proxy

of Y about a notification ñ = (n,R), the proxy checks
whether VY ∩R 6= ∅. If the test succeeds, a message is sent
to the local broker of Y to invoke notify(Y, n). Otherwise
the notification is discarded.

4. SCOPED EVENT-BASED SYSTEMS
WITH EVENT MAPPINGS

We now provide a specification and an implementation
for a scoped event system with event mappings. The map-
pings are required to be static in the same sense as the
scopes are: Changes are limited to components whose pub-
lished events have already been notified to all visible peers.

4.1 Specification
Scopes are components and they publish and consume

notifications about events just as simple components do.
But their behavior should not be merely a sum of their
constituent components. The expressiveness of the graph
of scopes is greatly extended if scopes are able to influence
the set of events communicated through them. For this
purpose, we define event mappings which are attached to
individual scopes and which fulfill two tasks. First, they
act as filters that explicitly allow only a specific set of
events to be published and consumed, describing the in-
terface of the scope. Second, all events crossing a scope
boundary, which encapsulates its subscopes, may be trans-
formed to map between internal and external representa-
tions. For example, mappings may be used to accommo-
date application-specific syntactical or semantical differ-
ences in data representations, like currencies in data types
or constraint views on published data required by security
issues.

We combine the two tasks and map an outer notification
n, which comes from a superscope, to an inner notification
n′ which is forwarded to the subscopes. If a mapping re-
sults in the empty notification ε /∈ N , it is not forwarded.
The empty event ε is introduced to achieve a blocking be-
havior of the mappings. This blocking mechanism may be
used to subsume filters into the mapping concept. Outgo-
ing events are handled vice versa.

Event mappings are formally defined as relations on scope
“boundaries.” Briefly spoken, scope boundaries are the
edges between the nodes in the scope graph G. With ev-
ery such edge we associate two binary, asymmetric rela-
tions ↗ and ↘ over the set N of notifications. Let n1

and n2 be two notifications. For any edge e and its as-
sociated relation ↗e, the mapping n1 ↗e n2 means that
when “traveling” upwards along the edge (i.e., in direction
of the superscope) n1 is transformed into n2. The relation
↘e is defined analogously for the reverse direction.

Using the relations, we can now define a relation ∼ over



N ×K that extends the visibility v(X,Y ):

(n1, X) ∼ (n2, Y )⇔(
X = Y ∧ n1 = n2

)
∨
(
∃X ′∈super(X) .∃n′. n1 ↗ n′

∧
[
(n′, X ′) ∼ (n2, Y )

])
∨
(
∃Y ′∈super(Y ) .∃n′. n′ ↘ n2

∧
[
(n1, X) ∼ (n′, Y ′)

])
In the previous definition, ↗ and ↘ are the relations as-
sociated with the edge which is referenced by super . The
recursive definition of ∼ can be best understood by look-
ing at Figure 5. Intuitively, (n1, X) ∼ (n2, Y ) means that
notification n1 can “flow” from X to Y and is received as
notification n2 (which might be different from n1). The
path on which n1 flows to n2 is similar to the visibility
relation defined in Section 3, i.e., it can be characterized
by a path from X up to a common superscope and then
down to Y . The visibility of n2 is additionally determined
by the event mappings along this path and their possibility
to block and discard notifications.

S

n2
X

X’

n

n’
Y’

Y
1

n’

Figure 5: Recursive definition of the relation
(n1, X) ∼ (n2, Y ).

We are now ready to define the semantics of a scoped
event system with event mappings. Like the graph of
scopes, the relations ↗ and ↘ are required to be static
in that a component’s mappings are not allowed to change
until all of its published events are notified.

Definition 3. A scoped event system with event map-
pings is a system that exhibits only traces so that every
state satisfies the following requirements:

Safety: #(DY , n) ≤ 1

∧
(

Notify(Y, n′)⇒

∃X. ∃F ∈ SY . (n ∈ PX) ∧ (n′ ∈ N(F ))

∧
[
(n′, X) ∼ (n, Y )

])
Liveness: Sub(Y, F )⇒

3

(
2
[
(n,X) ∼ (n′, Y )

]
⇒

2
[
Pub(X,n) ∧ n ∈ N(F )⇒ 3Notify(Y, n′)

])
∨ 3Unsub(Y, F )
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Figure 6: Transformation of mappings into compo-
nents.

The difference between Definitions 3 and 2 is that the
term v(X,Y ) is replaced by the term (n,X) ∼ (n′, Y ) and
that the published event n is not necessarily the same as
the delivered event n′. Similar to the visibility, this formu-
lation captures the notion that in addition to being visible
with respect to scoping, the event mappings must addition-
ally allow the flow of notifications. Also, the notification
n′ is the result of repetitive applications of the relations
↗ and ↘ along the path implicitly defined by ∼.

Note that Definition 3 is a generalization of Definition 2.
This is because a scoped event system can be regarded as
one with event mappings where all event mappings are the
identity relation (i.e., they do not change anything along
the way). In such a system, v(X,Y ) is implied by the
existence of a notification n such that (n,X) ∼ (n, Y ).

4.2 Implementation
The implementation of a scoped event system with map-

pings ESM is based on a scoped system ESS and a trans-
formation of the graph of scopes G that essentially follows
the idea of adding activity to edges. Figure 6 sketches the
transformation that creates G′ by exchanging every edge
(K,S) that does not apply the identity mappings n ↗ n
and n ↘ n for two extra mapping components K1

m and
K2
m. By inserting one Km we would be able to add some

form of activity to an edge. Two mapping components
are required to constrain the visibility of the transformed
notifications to the appropriate scopes.

m
2

m
1

Scoped Event System

X Y

KK

Figure 7: Architecture of scoped event system with
mappings.



Figure 7 describes the architecture of the implementa-
tion for the example system in Figure 6. A component
X connected to ESM is also directly connected to an un-
derlying scoped event system ESS . Calls to pub(X,n)
of ESM are forwarded to ESS without changes, and vice
versa, calls to notify(X,n) of ESS are forwarded to ESM.

In general, if a scope K is to be joined to a superscope S
by calling jscope(K,S), two mapping components K1

m and
K2
m are created that communicate directly via a point-

to-point connection. K1
m joins K, subscribes to all noti-

fications published in K, transforms and forwards them
to its peer. Furthermore, subscriptions in K have to be
transformed before they are forwarded. The implemen-
tation relies on externally supplied functions that map
notifications and filters/subscriptions between the internal
and external representations in K and S, respectively. K2

m

joins S and republishes all notifications it gets from its peer
K1
m. It subscribes in S according to the subscriptions for-

warded by K1
m, transforms any notifications received out of

S, again with externally supplied functions, and forwards
them to K1

m which republishes them into K.

5. CONCLUSIONS
We have introduced the notion of scopes as a powerful

structuring mechanism for event-based systems. Scopes
can help to hide internal configurations or delimit admin-
istrative domains. In conjunction with event mappings,
scopes can even provide support for heterogeneous pro-
cessing environments. We have also shown how to design
and implement scoped event systems by providing modular
and unambiguous specifications and provably correct im-
plementations. In future work we wish to study the open
specification questions concerning systems with dynamic
scopes. Additionally we will evaluate our design within
Rebeca, our prototype event system implementation [7].
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