RZ 3438 (# 93592) 07/29/02
Computer Science 17 pages

Research Report

Failure Detection Sequencers: Necessary and Sufficient Informa-
tion about Failures to Solve Predicate Detection

Felix C. Gartner

Department of Computer Science
Darmstadt University of Technology
D-64283 Darmstadt

Germany
felix@informatik.tu-darmstadt.de

Stefan Pleisch

IBM Research

Zurich Research Laboratory
8803 Rischlikon
Switzerland
spl@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

!
I
T}
ul
T
>
3
QD
o
@
S
>
c
@
=
o
@
=
Q
O
@
=)
I
Q
=
Q
=
<
>
~—
0
o
S
3
=~
<
(@]
N
=
=
=



Failure Detection Sequencers: Necessary and Sufficient
Information about Failures to Solve Predicate Detection

Felix C. Géartner Stefan Pleisch
Department of Computer Science IBM Research
Darmstadt University of Technology Zurich Research Laboratory
D-64283 Darmstadt, Germany CH-8803 Riischlikon, Switzerland
felix@informatik.tu-darmstadt.de spl@zurich.ibm.com
Abstract

This paper investigates the amount of information about failures needed to solve the
predicate detection problem in asynchronous systems with crash failures. In particular, we
show that predicate detection cannot be solved with traditional failure detectors, which
are only functions of failures. In analogy to the definition of failure detectors, we define a
failure detection sequencer, which can be regarded as a generalization of a failure detector.
More specifically, our failure detection sequencer ¥ outputs information about failures and
about the final state of the crashed process. We show that ¥ is necessary and sufficient
to solve predicate detection. Moreover, ¥ can be implemented in synchronous systems.
Finally, we relate sequencers to perfect failure detectors and characterize the amount of
knowledge about failures they additionally offer.



1 Introduction

Predicate detection in distributed settings is a well-understood problem and many techniques
together with their detection semantics have been proposed [6]. Most of these techniques
address predicate detection with the assumption that no faults occur in the system. However,
it is desirable to also detect predicates which refer to the operational state of processes, e.g.,
predicates such as “x; = 1 A crashed;”, where crashed; is a predicate that is true iff (if and
only if) process p; has crashed. Since x; = 1 might indicate the presence of a lock, the given
predicate can be used to formalize special conditions such as “process p; crashed while holding
a lock”, which is useful in the context of databases.

In the context of crash failures and the consensus problem, failure detectors have been
devised to provide information about failures [3], but they offer “solely” information about
failures. To detect general predicates such as the example predicate above, failure detection
information needs to be combined with additional information about the internal state of
a process. Indeed, while a failure detector may capture the predicate crashed;, it gives no
information about the value of x;.

Ideally, a predicate detection algorithm never erroneously detects a predicate and does
not miss any occurrence of the predicate in the underlying computation. As shown in [11],
the quality of predicate detection critically depends on the quality of failure detection. This
explains why work in [9, 17, 19] puts a restriction on the type of detectable predicates, or [10]
weakens the semantics of predicate detection.

In previous work [11], we have investigated predicate detection in an asynchronous system
with crash failures and found that it is impossible to solve predicate detection even with a very
strong failure detector, the perfect failure detector [3]. In this paper, we show that predicate
detection cannot be solved with any failure detector (as defined in [3]), no matter how strong
it is. For example, consider a “real-time perfect” failure detector which makes no mistakes
and flags the occurrence of a crash immediately. Even this failure detector is insufficient to
solve predicate detection. The reason for this impossibility is that failure detectors are only
functions of failures. Our proof is a generalization of previous impossibility proofs by the
present authors [11] and by Charron-Bost, Guerraoui and Schiper [5]. We attempt to remedy
the unpleasant situation caused by the result and (in analogy to the definition of failure
detectors) define a failure detection sequencer. A failure detection sequencer is a generalization
of a failure detector in that it conveys information that is a function of the failures and the
current history of the system which is under observation. To solve predicate detection, we
define a particular failure detection sequencer class ¥, that only gives one additional piece
of information: for every crashed process it gives the latest state of the process before this
one crashes. We show that X is necessary and sufficient to solve predicate detection and
consequently is the “weakest failure detection sequencer” to solve predicate detection.

Although ¥ is in a sense “stronger” than a perfect failure detector, it is still possible to
implement Y in synchronous systems. Moreover, we show that using X it is possible to im-
plement a synchronizer for asynchronous crash-affected systems which makes these systems
equivalent to purely synchronous systems in terms of the solvability of time-free [5] prob-
lems. We finally argue that while perfect failure detectors can be viewed as capturing the
synchrony of processes, failure detection sequencers in addition also capture the synchrony of
communication.

After presenting the system model and defining the problem of predicate detection in
Sections 2 and 3, we present our contributions in the following order: First, we show that it



is impossible to achieve predicate detection with any failure detector in the sense of Chandra
and Toueg [3] in Section 4. Section 5 introduces the failure detection sequencer abstraction
and shows that a particular sequencer X is equivalent to predicate detection. In Section 6, we
show how to implement ¥ and then discuss the strength of ¥ in Section 7. Finally, Section 8
concludes the paper.

2 Model

We consider an asynchronous distributed systems in which processes communicate via message
passing. This means that no bounds on message transmission time nor on relative process
speeds exist. Message delivery is reliable, i.e., a sent message is eventually delivered and no
spurious messages are delivered. Processes can fail by crashing, i.e., simply stop to execute
steps. Crashed processes do not recover any more. Processes which do not (ever) crash are
called correct.

2.1 Distributed Computations

A distributed system, called the application system, consists of a finite set II of n processes
P1,D2, ..., pn (called application processes). Each process p; has a local state s; (defined by
the values assigned to its local variables) and performs atomic state transitions according to
a local algorithm A. Such a state transition is also called an event. Sending and receiving a
message also results in a state change. If a process p; sends a message in state s; which is
received by process p; resulting in state s;, we say that s; and s; correspond.

We define a relation of potential causality (denoted “—") [2] on local states as the transitive
closure of the following two relations:

e s — s if s and s’ happen on the same process and s happens before s’.
e s — s if s and s’ happen on different processes and s’ and s correspond.

A local history of p; is an (infinite) sequence s1, S2, . .. of states. A distributed computation
is defined as a set of local histories, one for every process. A global state of the computation
is a vector G = (s1, s2, ..., sp) of local states, one for each process. Each local state identifies
a point in the local history of a process and thus is equivalent to the set of all local states
the process went through to reach its “current” local state. A global state G is consistent if
the union of these sets (of all local states in G) is left-closed with respect to —, i.e., if a state
s is in this set and s’ — s, then s’ must also be in this set. The set of all global states of a
computation together with — define a lattice [15].

We assume the existence of a discrete global clock. Processes do not have access to this
global clock; it is merely a fictionous device to simplify presentation. Let 7 denote the range
of output values of the global clock. For simplicity we think of 7 to be the set of natural
numbers.

2.2 Failure Detectors

A failure detector is a device that can be queried at any time ¢ € 7 and outputs the set of
processes that it suspects to have crashed at time t.



We adopt the formal definitions of failure detectors by Chandra and Toueg [3]. A failure
pattern F' is a mapping from 7 to the powerset of II. The value of F(t) specifies the set of
application processes that have crashed until time ¢t € 7. A failure detector history H is a
mapping from IT x 7 to the powerset of II. The value of H(p,t) denotes the return value of
the failure detector module for process p at time ¢, i.e., if p queries the failure detector at
time t, H(m,t) contains the set of processes suspected at that time.

A failure detector D maps a failure pattern F' to a set of failure detector histories. The
set of histories returned by the failure detector satisfy certain accuracy and completeness
properties. A perfect failure detector satisfies strong accuracy and strong completeness:

e Strong accuracy: no process is suspected before it crashes. Formally:

VFNH € D(F)Nt € TNp,q e I\ F(t).p & H(q,t)

e Strong completeness: a crashed process is eventually permanently suspected by every
correct process. Formally:

VEVH € D(F).Np € 1.Yq € correct()Nt € T.p & F(t)Ap € F(t+1) = 3’ .Vt" > t'.p € H(q,t')

The set of all perfect failure detectors is denoted by P. In the following, we will sometimes
use the symbol P as a shorthand for any failure detector from P.

2.3 Runs and Steps

Chandra and Toueg [3] define a computation (which they call a run) to be a tuple R =
(F,D,I1,5,T), where S is a sequence of algorithm steps and 7T is a sequence of increasing
time values when these steps are taken. Steps are defined with respect to an algorithm which
in turn is a collection of deterministic automata. We define a run in a slightly different but
equivalent manner. Instead of S and T we use two functions: a step function S from 7 to
the set of all algorithm steps, and a process function S}, from 7 to II. Briefly spoken, S(t)
denotes the process which takes a step at time ¢ and Ss(¢) identifies the step which was taken.
Without loss of generality, we assume that at any instance of time at most one process takes
a step. If no process takes a step at time ¢, both functions evaluate to L. A computation
then is a tuple R = (F,D, I, Ss, Sp).

In predicate detection, which is defined in the following section, we wish to detect whether
a predicate holds on the state of processes. We assume that the state resulting from an
algorithm step contains “enough information” for predicate detection purposes, e.g., if we
are interested in detecting whether or not a process has reached line z, a “program counter”
must be included in the local state of a process. The most recent step therefore can be used
to infer the state which the process is in after executing that step. In this paper, we use the
terms state and step interchangeably.

3 Predicate Detection

To detect predicates in the application system (see Section 2.1), the application system is
extended with a set ® of m monitor processes bi,...,by,. The sets Il and ® together form
the observation system.



While application processes may crash, we assume, for simplicity, that monitor processes
do not. Crashes of application processes do not change the local state of the process. However,
the operational state of a process p; is modeled by a virtual boolean variable crashed; on every
monitor. The global state of the system together with the vector of crashed variables defines
the extended global state of the system.

The task of the monitor processes is to observe the application processes and invoke a
special primitive detected if the state of the system satisfies a certain predicate. A predicate
¢ is a boolean function on the extended global state of the application system. For example,
the predicate x; = 2 A crashed; is true in a global state if the variable x; of p; equals 2 and p;
has crashed. We say that ¢ holds in a computation c iff there exists a consistent global state
in ¢ such that ¢ is true in that state.

In our version of predicate detection, monitors can observe multiple predicates simulta-
neously. More specifically, the predicate detection algorithm maintains a set S of currently
active predicates. A special primitive fork(¢) can be used to add a predicate ¢ to this set.
Whenever some ¢ € S is found to hold in the computation, the predicate detection algorithm
indicates this by pointing to ¢, i.e., by calling detected(¢$). Formally, detecting any ¢ € S
corresponds to detecting the disjunction of all such ¢. This formulation of predicate detec-
tion has the important advantage of allowing us to increase the set of observed predicates at
runtime. In other words, it does not matter when a predicate ¢ is added to S. Even if ¢ held
“early” in the computation and fork(¢) is invoked very late (e.g., after hours), then still the
algorithm must eventually invoke detected(¢) . In this sense, our predicate detection concept
is adaptive and thus slightly more general than other definitions of predicate detection (e.g.,
perfect predicate detection [11]). This is reflected in the following definition:

Definition 1 (predicate detection) A predicate detection algorithm is a distributed algo-
rithm running on the observation system with an input operation fork() and an output oper-
ation detected(). Using fork(¢) a new predicate can be added to an initially empty set S of
predicates. The algorithm must satisfy the following properties:

e (Safety) If a monitor invokes detected(¢) then ¢ holds in the computation and ¢ € S.

o (Liveness) If ¢ € S and ¢ holds in the computation, then eventually a monitor must
invoke detected(o).

Our definition of predicate detection makes no reference to a specific implementation.
Generally, one expects application processes to use causal broadcast [2] to consistently dis-
seminate information about every local state change to all monitor processes. But this is
not demanded by the specification. Furthermore, there is no indication how monitors keep
track of the changes of crashed values of processes, i.e., we do not postulate the existence
of a special type of failure detector in the specification. However, failure detection can be
considered a special case of predicate detection on the extended state space where the pred-
icate to be detected consists only of the crashed variables of processes. This highlights the
close relationship between failure detection and predicate detection which is studied in the
following sections.

Note that the meaning of “¢ holds in the computation” corresponds to the detection
modality possibly(¢) [7, 14]. Detecting possibly(¢) involves constructing the entire compu-
tation lattice in the general case. The lattice represents all possible observations; hence, an

'Later in Section 5.2 we show how this property can be implemented in asynchronous systems.



observation is a path through the lattice. For simplicity we restrict our attention to observer-
independent predicates [4]. For these types of predicates it is sufficient to construct a single
observation, i.e., a single path through the lattice, to check whether ¢ holds in the observa-
tion. For example, stable predicates are observer-independent (a predicate is stable iff once
it holds it holds forever). However, not all observer independent predicates are stable. For
example, predicates which are local to a single process are observer-independent but may not
be stable.

4 Impossibility of Predicate Detection in a Faulty Environ-
ment using Failure Detectors

In this section we show that predicate detection cannot be solved with any failure detector
in the sense of Chandra and Toueg [3]. This is because failure detectors are “functions of
failures”, i.e., the failure detector D is a function which maps a failure pattern F' to some
element of an arbitrary range G. The proof is based on the assumption that apart from using
failure detectors and (asynchronous) messages, no information can flow between processes.
Messages sent by application processes to monitor processes for the sake of predicate detection
are called control messages. The impossibility holds even if we assume that state changes on
the application processes and the broadcast of control messages happen atomically.

The problem underlying this impossibility is to know whether there are still messages in
transit from process p; even if the failure detector already suspects p;. Indeed, if we assume
that an application process broadcasts a message with every local state change, the latest
state of p; is reflected by the “latest” control messages received by the monitor m. Using
causal broadcast [2] and the information from these control messages m can construct the
latest state of p;. Crash detections, however, arrive out of sequence with the process events
(and also the control messages); they are obtained by querying a local failure detector module.
When m detects the failure of p;, control messages from p; may still be in transmission from
p; to m (see Figure 1 (a)). Hence, m needs to wait for the arrival of these messages before
considering the failure of p;. However, in an asynchronous system, these messages may take
a long time to arrive at m; m cannot distinguish at a given point in time, whether a message
is still in transit and has been delayed (see Figure 1 (a)) or whether no message will arrive
from p; any more [8] (see Figure 1 (b)).

predicate = last event before crash was e

pi D, Sk
bi 3% > bi % >

predicate evaluates predicate evaluates
to true to true

(@) (b)

Figure 1: Intuitive reason for the impossibility result of Theorem 1.

Theorem 1 It is impossible to solve predicate detection with any failure detector D.



For lack of space, the formal proof is relegated to Appendix A.1. In the next section
we consider a way of circumventing the impossibility by extending the concept of a failure
detector to a component that is also useful in the context of predicate detection. We call such
a component failure detection sequencer.

5 Failure Detection Sequencers

The failure detector abstraction was introduced by Chandra and Toueg [3] to characterize
different system models with respect to the solvability of problems in fault-tolerant computing.

We take a similar approach as [3] and devise an oracle that encodes enough information
to solve predicate detection in asynchronous systems with process crashes. As shown in the
previous section, information about failures alone is not sufficient. Hence, our oracle also
needs to provide information about the state of the process when it crashed.

5.1 Definition

We now define a failure detection sequencer Y, which consists of a set of passive modules,
one for each monitor process. The sequencer can be queried by the monitor and returns an
array of size n. The value at index ¢ of the array is either L or contains a predicate ¢ on the
local state of process p;. Informally spoken, the latter means that p; has crashed and that
its final state satisfied ¢. The predicate ¢ may have different forms, e.g., indicate a unique
sequence number of the step last performed by p;. Let A denote the set of all possible array
values, i.e., combinations of 1 and local predicates, which can be returned by ¥. Formally,
Y. is defined as follows:

A sequencer history Hy is a mapping from ® X7 to A. The value of Hx(m,t) indicates the
return value of ¥ at monitor m if it is queried at time t. If Hyx.(m,t)[i] = s, then m suspects
p; at time t to be in s (s #.L1). A failure detection sequencer ¥ maps a failure pattern F, a
step function S, and a process function S, to a set of sequencer histories.

Given a time t, the most recent step of a process p; can be determined by inspecting S,
and S,. If p; has not executed any step, then the most recent step is denoted by e. Formally,
the most recent step of p; at t given Sy and S, is s iff

most_recent_step(p;, t, Ss, Sp) : I’ < t.(Ss(t') = s)A(Sp(t') = pi) A(VE" .t <" < t.5,(t") # pi)

We require that the set of all possible sequencer histories Hy satisfies the following two
properties:

e (Accuracy) No process is incorrectly suspected to be in state s. Formally:

Vm.¥p; Vt.Hs(m,t)[i] = s #L=p; € F(t) A (s = most_recent_step(p;,t, Ss, Sp))

e (Completeness) If p crashes, then eventually every monitor will permanently suspect p
to be in some state. Formally:

Vm.Np;Vt.p € F(t) = 3t > t.vt" >t/ . Hs(m,t")[i] #L

Since the accuray requirement has a conjunction in the consequent, it is possible to sep-
arate it into a step accuracy part and a crash accuracy part. Crash accuracy corresponds to



strong accuracy of Chandra and Toueg [3] (“no process is suspected before it crashes”), while
step accuracy would mean that a non-L sequencer output for process p; at time ¢ always
equals the state which p; is in at the same moment (i.e., at time t). Clearly, this property has
only trivial solutions (i.e., a solution which always outputs L) since asynchronous message
passing does not allow instantaneous message delivery. However, the combination of step
accuracy and crash accuracy makes sense again since crashes “freeze” the state of a process
so that there is no danger of state change once the sequencer has suspected that process.

We have called the new device a “sequencer” because it allows to implement causal order
on failure detection events, as we now explain. Using ¥ it is possible to infer the crashed
state of a process at the moment it is suspected. This means that it is possible to know how
many control messages are in transit. Hence, the “delivery” of the suspicion can be delayed
until all causally preceding events have been delivered; ¥ can be used to “sequence” crash
notifications, as shown in the following section.

5.2 Equivalence to Predicate Detection

Now we investigate the power of failure detection sequencers and show that they are sufficient
and necessary to solve predicate detection. First we consider sufficiency.

The idea of implementing predicate detection using ¥ is to embed crash events consistently
into the causal order — of events in a computation. For this purpose, the algorithm shown
in Figure 2 uses causal broadcast [2] (using primitives c-bcast and c-deliver) to disseminate
information about state changes to all monitors and to withhold issuing the crash occurrence
when X suspects p; after some state s until the state of p; has indeed reached state s. This
is done using a vector def_crash[i] (for “deferred crash”).

The adaptability of predicate detection is implemented by using a variable history, a
sequence of global states. Whenever a new predicate ¢ is issued using the fork command, the
entire history is checked whether or not ¢ held in the past. For lack of space the proof of the
following theorem is given in Appendix A.2.

Theorem 2 Predicate detection can be solved using 3.

We now show that ¥ is necessary to solve predicate detection. To do this we assume the
existence of an abstract algorithm PD that solves predicate detection on a given computation.
Then we give an algorithm that emulates the output vector of 3 using PD.

Similar to the predicate detection algorithm in Figure 2 we instruct application processes
to send a control message to all monitors if a local event happens. These control messages
are used to fork an increasing number of instances of PD. Initially, a single instance for the
predicate “p; crashed in initial state” is started for every process p;. When the first control
message (i, s) arrives, a new instance is forked for the predicate “p; crashed in state s”. This
is done whenever a new control message arrives.

The output vector which simulates the output of ¥ is initialized with L values and only
changed, if one of the instances of predicate detection terminates by issuing detected(¢). This
indicates that a process crashed in some state. The algorithm reflects this by changing the
corresponding entry in output. The change is permanent since the state in which a process
crashes does not change anymore. The formal proof of the following theorem is given in
Appendix A.3.

Theorem 3 If predicate detection is solvable, then ¥ can be implemented.



1 On every application process p;:

2 (whenever a state change from s to s’ happens) do

3 c-beast (i,s) to all monitors

4 On every monitor process m;:

5 variables:

6 state[1..n] of (local state information) init (initial states of processes)
7 crashed[1..n] of boolean init false

8 def-crashed[1..n] of {L} U (local state information)

9 history sequence of ((state, crashed)) init (initial state)
10 S set of (global predicates) init ()

11 algorithm:

12 do forever

13 case (next event) of {* three cases possible *}
14 case 1: ((3, s) is c-delivered)

15 state[i] := s

16 history := history - (state, crashed)

17 if 3¢ € S.¢(state, crashed) then detected(¢p) endif
18 if def_crash[i] = state[i] then crashed[i] := true endif
19 history := history - (state, crashed)

20 if 3¢ € S.¢(state, crashed) then detected(¢p) endif
21 case 2: (X suspects p; in s)

22 if state[i] = s then

23 crashed[i] ;= true

24 history := history - (state, crashed)

25 if 3¢ € S.¢(state, crashed) then detected(p) endif
26 else {* state[i] # s *}

27 def_crash[i] := s

28 endif

29 case 3: (fork(¢) is called)

30 S:=SU{s}

31 if 3s; € history.¢(s;) then detected($) endif

32 end {* case *}

33 end {* do forever *}

Figure 2: Solving predicate detection using . The primitives c-bcast and c-deliver denote
causal broadcast and causal message delivery, respectively. The operator - denotes concate-
nation of sequences. Furthermore, the choice of the case statement is supposed to happen in
a fair manner (e.g., event handling is performed using first-come first-serve).

It is interesting to study the role of adaptiveness (i.e., the ability to “restart” predicate
detection via fork) in the proof of Theorem 3. To see this, consider a definition of predicate
detection without adaptiveness, i.e., it is merely possible to start instances of PD at the
beginning of the computation. Not knowing the way in which the computation will proceed,
it is necessary to invoke an instance of predicate detection for every state a process may
reach. Hence, non-adaptive predicate detection can be used to implement X as long as the
state space of a process is finite. Adaptiveness allows to invoke instances of predicate detection
“on demand”. This means that — given infinite state space — while there is no bound on the
number of calls to fork, the number of “parallel” instances of predicate detection is always
finite.

The following theorem is an immediate consequence of Theorems 2 and 3. It can be
rephrased as showing that X is the “weakest failure detector” for solving predicate detection.
The quotation marks are important, because from Theorem 1 we know that we should not



1 On every application process p;:

2 (whenever a state change (s, s’) happens) do

3 c-beast (i,s) to all monitors

4 On every monitor process m;:

5 variables:

6 output[1l..n] of {L} U (process state information) initially L
7 algorithm:

8 for all i € {1,...,n} do begin

9 fork(“p; crashed in initial state”) end

10 do forever

1 (wait until (4, s) is c-delivered or detected(¢) is invoked)
12 if {(i,s) was c-delivered) then

13 fork(“p; crashed in state s”)

14 elsif (detected(¢) was called)then

15 {* ¢ is “p; crashed in s” *}

16 outputli] := s

17 endif

18 end {* do forever *}

Figure 3: Emulating ¥ using a predicate detection algorithm. State changes and sending
control messages on application processes is assumed to happen atomically. Event handling
in line 11 is again performed in a fair manner, e.g., using first-come first-serve.

call ¥ a failure detector.

Theorem 4 Solving predicate detection is equivalent to implementing 3.

6 Implementing X

The sequencer Y is a rather strong device and its strength makes it a highly desirable tool
in crash-affected systems. Hence, the question naturally arises on how to implement ¥ in
“real” systems. First, consider synchronous systems, i.e., systems where bounds on message
delivery delays and relative processing speeds exist. In synchronous systems, > can easily be
implemented, for instance, by the algorithm in Figure 4. This algorithm is an adaption of
the algorithm for implementing a perfect failure detector in synchronous systems presented
by Tel [16]. With every local step, process p; decrements a special timer variable r, one for
every remote process. Upon message reception from process p; (j # i), the timer is reset
to the inital value §, which is computed from the maximum message delivery delay and the
maximum processing speed difference. If p; fails to receive a message from p; before the timer
elapses, then p; is suspected by p;.

To see that the algorithm indeed implements Y, we need to show that it satisfies the
accuracy and completeness properties given in Section 5.1. The proof of the completeness
property is the same as for perfect failure detectors. To see that the accuracy property is
satisfied, consider the sequence of “alive” messages received by Y. As these messages are
sent and arrive in FIFO order?, the failure detector also receives the correct sequence of state
information. If p; crashes, the final message received by p; (i # j) is also the final message

2FIFO broadcasts are implementable in synchronous systems, as they can even be implemented in asyn-
chronous systems [12].



1 On every process p;:

2 with (every step) FIFOsend “alive in state s” to all
3 On every process p;:

4 variables:

5 D;[1..n] init (L,..., L) {* sequencer output *}

6 ri[1..n] init (4,...,0) {* timers *}

7 S;[1..n] init (initial states of p1,...,pn)

8 algorithm:

9 upon FIFOreceive “alive in state s” from p; do
10 (reset timer r;[j] to d)

1 Silj] :==s

12 upon (expiry of timer r;[j]) do

i Dylj] = Silj

Figure 4: Implementing ¥ in synchronous systems. The value § is a local timeout value
computed from the global boundary on message delivery delay and relative processing speeds.

which was sent by p;. This implies that the state information given in that message is a true
indication of the most recent step performed by p;.

Theorem 5 In a synchronous system the output of the algorithm in Figure 4 satisfies the
accuracy and completeness conditions of 3.

Now consider a system without bounds on relative process speeds but bounded com-
munication delays (i.e., asynchronous processes with synchronous communication). In such
systems, Y is implementable if any D € P is given. The algorithm is shown in Figure 5 and
is similar to the one in Figure 4. Here the timing bound § refers to the synchrony of the
communication channels. Completeness is achieved through the completeness of D and the
fact that the timer eventually runs out. Accuracy is satisfied because of the accuracy of D,
the FIFO property of messages (as above), and the fact that after expiry of the timer, no
message can be in transit (bounded communication delays).

8 algorithm:

9 upon FIFOreceive “alive in state s” from p; do
10 Silj] :==s

1 upon (D suspects p;) do

12 (reset timer r;[j] to 0)

13 upon (expiry of timer r;[j]) do

14 if (D suspects p;) then

15 D;[j] := Silj]

16 endif

17

Figure 5: Implementing ¥ using D € P and synchronous communication (lines 1 to 7 are the
same as in Figure 4). The value 0 is a local timeout value computed from the global boundary
on message delivery delay.

10



Theorem 6 In a system with asynchronous processes, synchronous communication, and any
D € P, the output of the algorithm in Figure 5 satisfies the accuracy and completeness
conditions of X.

We discuss the relationship between perfect failure detectors and ¥ in more detail in the
following section.

7 Discussion

We have shown that predicate detection cannot be solved with a perfect failure detector.
However, it is solvable using failure detection sequencer Y. In a sense this means that X
is “stronger” than a perfect failure detector. Since both abstractions can be implemented
in synchronous systems, a perfect failure detector seems to “loose” some information at its
interface which a sequencer retains. In this context, two questions arise which we now discuss:
(1) How can this difference in information be characterized, and (2) how much information
(if any) does a sequencer loose compared to a fully synchronous system?

Regarding question (1), it seems that the synchrony of communication is the aspect which
¥ (in contrast to perfect failure detectors) encapsulates. Consider for example an additional
oracle A which can be queried whether or not the communication channel to a process p;
is empty. Both oracles, A and any D € P, are incomparable, since they cannot emulate
eachother in asynchronous crash-affected systems. However, using A instead of the timeout
mechanism in the algorithm of Figure 5 yields 3. Hence, knowledge about the synchrony
of communication channels is all that is needed to strengthen a perfect failure detector to
Y. Conversely, this information can be regarded as being “lost” at the interface of a perfect
failure detector.

Regarding question (2), we now argue that ¥ retains the “full” information present in
synchronous systems. Using 3, it is possible to implement a synchronizer [1] for asynchronous
crash-affected systems. A synchronizer is a distributed algorithm that allows asynchronous
processes to proceed in rounds. For this, the synchronizer generates a sequence of “clock-
pulses” at each process which separate the rounds. With every pulse, a process is allowed to
send at most one message to one of its neighbors. The synchronizer ensures that all messages
sent at the beginning of round r are received within round r. It also ensures that every correct
process (i.e., a process that does not fail) participates in infinitely many rounds.

Since the failure detection sequencer makes it possible to identify the “final” message from
a crashed process, it is possible to implement such a synchronizer just like in the fault-free
case [16, p. 408]: At the beginning of round r, every surviving process sends exactly one
message m, to every other process (using reliable broadcast [12]). The “application message”
which the process might send in round r is packed together with this synchronizer message
to form a single message. A process p; waits until, for every other process p;, either (a) m,
is received or (b) ¥ suspects p;. Note that in the latter case it is possible to distinguish the
two cases where p; crashed before or after sending the message m,. (This distinction is not
possible with a perfect failure detector.) Waiting for m, is important in order to satisfy the
specification of the synchronizer, as no other way exists to prevent application messages from
round 7 to be received in round r + 1 or later.

The pulses generated by the synchronizer resemble a form of global logical time. Such a
time is present in synchronous systems and so the synchronizer transforms the asynchronous
system into a synchronous system, with the exception of global real time. In other words,

11



time-free applications [5] perceive an asynchronous system agmented with ¥ as equally strong
as a synchronous system. Hence, Y can be regarded as a form of failure detector which offers
applications “full” synchrony without referring to a global clock.

8 Future Work

Many open issues for future work remain: For instance, can other protocols (like those used
for solving consensus) exploit the additional power of failure detection sequencers to improve
efficiency? Another interesting issue is whether other (possibly weaker) classes of failure
detection sequencers are meaningful in asynchronous systems and offer more information than
failure detectors. An obvious candidate would be an “eventually accurate” failure detection
sequencer Y. However, we conjecture that &Y is equivalent to P with respect to the
problems it allows to solve.

Acknowledgments

We wish to thank Rachid Guerraoui for his comments on an earlier version of this paper. The
first author wishes to thank Ted Herman for many helpful discussions on the topic of failure
detection.

References

[1] Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM,
32(4):804-823, October 1985.

[2] K.P. Birman and T.A. Joseph. Reliable communication in the presence of failures. ACM
Transactions on Computer Systems, 5(1):47-76, February 1995.

[3] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225-267, March 1996.

[4] Bernadette Charron-Bost, Carole Delporte-Gallet, and Hugues Fauconnier. Local and
temporal predicates in distributed systems. ACM Transactions on Programming Lan-
guages and Systems, 17(1):157-179, January 1995.

[5] Bernadette Charron-Bost, Rachid Guerraoui, and André Schiper. Synchronous system
and perfect failure detector: Solvability and efficiency issues. In International Conference
on Dependable Systems and Networks (IEEE Computer Society), 2000.

[6] Craig M. Chase and Vijay K. Garg. Detection of global predicates: Techniques and their
limitations. Distributed Computing, 11(4):191-201, 1998.

[7] Robert Cooper and Keith Marzullo. Consistent detection of global predicates. ACM
SIGPLAN Notices, 26(12):167-174, December 1991.

[8] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374-382, April 1985.

12



[9]

[10]

[11]

[13]

[14]

A

Vijay K. Garg and J. Roger Mitchell. Distributed predicate detection in a faulty en-
vironment. In Proceedings of the 18th IEEE International Conference on Distributed
Computing Systems (ICDCS98), 1998.

Felix C. Géartner and Sven Kloppenburg. Consistent detection of global predicates under
a weak fault assumption. In Proceedings of the 19th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS2000), pages 94-103, Niirnberg, Germany, October 2000. IEEE
Computer Society Press.

Felix C. Gértner and Stefan Pleisch. (Im)Possibilities of predicate detection in crash-
affected systems. In Proceedings of the 5th Workshop on Self-Stabilizing Systems (WSS
2001), number 2194 in Lecture Notes in Computer Science, pages 98-113, Lisbon, Por-
tugal, October 2001. Springer-Verlag.

Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical Report TR94-1425, Cornell University, Computer Science
Department, May 1994.

Leslie Lamport. How to write a proof. American Mathematical Monthly, 102(7):600-608,
August/September 1995.

Keith Marzullo and Gil Neiger. Detection of global state predicates. In Proceedings of
the 5th International Workshop on Distributed Algorithms (WDAGI1), pages 254-272,
1991.

Friedemann Mattern. Virtual time and global states of distributed systems. In M. Cos-
nard et al., editor, Proceedings of the International Workshop on Parallel and Distributed
Algorithms, pages 215-226, Chateau de Bonas, France, 1989. Elsevier Science Publishers.
Reprinted on pages 123-133 in [18].

Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press, second
edition, 2000.

Subbarayan Venkatesan. Reliable protocols for distributed termination detection. IEEE
Transactions on Reliability, 38(1):103-110, April 1989.

Zhonghua Yang and T. Anthony Marsland, editors. Global States and Time in Distributed
Systems. IEEE Computer Society Press, 1994.

Pei yu Li and Bruce McMillin. Fault-tolerant distributed deadlock detection/resolution.
In Proceedings of the 17th Annual International Computer Software and Applications
Conference (COMPSAC’93), pages 224-230, November 1993.

Proofs

We now give the formal proofs of the theorems. Proofs are written in a structured style similar
to proof trees of interactive theorem proving environments. This approach is advocated by
Lamport who promises that this style “makes it much harder to prove things that are not
true” [13]. The proof is a sequence of numbered proof steps at different levels. Every proof
step has a proof which may be refined at lower levels by additional proof steps. For example,

13



proof step (1)2 is the second proof step on level 1. Proofs may also be read in a structured
way, for example, by reading only the top level proof steps and going into sublevels only when
necessary.

A.1 Proof of Theorem 1

AsSUME: There exists an algorithm A which solves predicate detection using D.
Prove: False
(1)1. Consider a run Ry = (F,D(F),1,S;,Sp) in which p crashes without executing a single
step. Consider the predicate ¢ =“p crashed in initial state”. Eventually (say at time
t1), A will detect ¢.
PROOF: Follows from the liveness property of predicate detection and the assumption that
A solves predicate detection. []
(1)2. Consider a run Ry with the same failure pattern F', but different Ss and S,, where p
executes a step s1 before it crashes. Algorithm A never detects ¢.
PROOF: From the safety property of predicate detection and the assumption that A solves
predicate detection. []
(1)3. In run Ry, eventually (say at time t2) A receives a control message which includes
information by p about executing step s;.
PROOF: Follows from step (1)2, the assumption that no other means exist to communicate
local state changes, the atomicity of step execution and control message sending on p, and
the reliable channel assumption. [
(1)4. ty <ty
(2)1. ASSUME: tg > t;
Prove: False
(3)1. In run Ra, A does not detect ¢ at ;.
PRroOF: Follows from step (1)2 (A never detects ¢ in Ry). [
(3)2. D(F) is the same in both runs R; and Ra.
PROOF: Follows from the fact that F is the same and that D is a function of F. []
(3)3. In run R;, A does not detect ¢ at ¢;.
From steps (3)1, (3)2 and the fact that no other communication occurs between p and
m.
(3)4. Q.E.D.
PROOF: Step (3)3 contradicts step (1)1. []
(2)2. Q.E.D.
PRroOF: Follows indirectly from step (2)1. []
(1)5. Q.E.D.
PROOF: Step (1)4 violates the asynchrony condition of communication. []

A.2 Proof of Theorem 2

ASSUME: Y is available.
PRrROVE: Predicate detection can be solved.

(1)1. The variable S implements the specification variable of the same name.
PROOF: The specification variable collects the predicates which have been given to fork.
This is done by the algorithm in Figure 2 at lines 29 and 30. Hence, S can be regarded as
a true implementation of the specification variable. []

14



(1)2. The tuple (state, crashed) always contains a consistent global state on the extended
state space of the computation.
PROOF: Follows from the use of the c-bcast and c-deliver primitives, the definition of causal
order, the way in which def_crash is used, and the accuracy property of X. []
(1)3. Every state in history is a consistent global state on the extended state space of the
computation.
PROOF: Follows from step (1)2 and the way in which new states are appended to history. [
(1)4. If ¢ holds in the computation, then eventually monitor m; will construct a global state
G = (state, crashed) on the extended state space such that ¢ holds in G.
PRrOOF: Follows from the use of the c-bcast and c-deliver primitives (their liveness), the
fact that ¢ is observer-independent, the completeness property of ¥ and the fair event
scheduling assumption. []
(1)5. If ¢ holds in the computation, then eventually m; will add a global state G to history
such that ¢ holds in G.
PRrROOF: Follows from step (1)4 and the algorithm. []
(1)6. The algorithm in Figure 2 satisfies the Safety property of predicate detection.
AssuME: The monitor invokes detected(¢).
PROVE: ¢ holds in the computation and ¢ € S.
(2)1. ASSUME: detected(¢) is invoked in lines 17, 20, or 25.
Prove: Q.E.D.
(3)1. ¢ € S and S reflects the specification variable of the same name.
PROOF: Follows from the algorithm and step (1)1. []
(3)2. The monitor has constructed a consistent global state G = (state, crashed) on the
extended state space such that ¢ holds in G.
PROOF: Follows from the algorithm. []
(3)3. There exists a consistent global state of the computation such that ¢ holds in that
state.
PROOF: Follows from steps (3)2 and (1)2. [
(3)4. Q.E.D.
PRrROOF: From step (3)3 follows that ¢ holds in the computation and from step (3)1
follows that ¢ € S. [J
(2)2. ASSUME: detected(¢) is invoked in line 31.
Prove: Q.E.D.
3)1. o€ S
PRrROOF: Follows from the algorithm and step (1)1. []
(3)2. There exists a global state G in history such that ¢ holds in G.
PROOF: Follows from the algorithm. []
(3)3. There exists a state in the computation such that ¢ holds in that state.
PROOF: Follows from steps (3)2 and (1)3. [
(3)4. Q.E.D.
PRrROOF: From step (3)3 follows that ¢ holds in the computation and from step (3)1
follows that ¢ € S. [J
(2)3. Q.E.D.
PROOF: Steps (2)1 and (2)2 cover all cases. []
(1)7. The algorithm in Figure 2 satisfies the Liveness property of predicate detection.
ASSUME: ¢ holds in the computation and ¢ € S.
PrROVE: Eventually the monitor invokes detected(¢).

15



(2)1. Eventually (at time ¢;), the monitor constructs a global state G = (state, crashed)
on the extended state space such that ¢ holds in G.
PRroOF: Follows from step (1)4. []
(2)2. At some point ¢2 in time fork(¢) was invoked.
PROOF: Follows from the assumption that ¢ € S and step (1)1. []
(2)3. ASSUME: t; < t2
Prove: Q.E.D.
(3)1. G is added to history at time t;.
PROOF: Follows from step (2)1 and the algorithm. []
(3)2. Q.E.D.
PRrROOF: When fork(¢) is invoked at time ¢2 the conditional in line 31 will become true
because of step (2)1. Hence, detected(¢) will be invoked. []
(2)4. ASSUME: t1 > t9
Prove: Q.E.D.
(3)1. At time t1, ¢ € S.
PROOF: Follows from the assumption and steps (2)2 and (1)1. [J
(3)2. Q.E.D.
PROOF: At time ¢; (when m; constructs G), the algorithm must pass lines 15, 18, or
23. Each of these lines is followed by a conditional which is true because of step (3)1.
Hence, detected(¢) is invoked. []
(2)5. Q.E.D.
PROOF: Follows from the fact that steps (2)3 and (2)4 cover all cases. []
(1)8. Q.E.D.
PROOF: From steps (1)6 and (1)7 follows that the algorithm satisfies the Safety and Liveness
properties of predicate detection. []

A.3 Proof of Theorem 3

AssUME: Predicate detection is solvable.
PrROVE: X can be implemented.

(1)1. There exists a predicate detection algorithm PD with operations fork and detected that
solves predicate detection for a global predicate ¢ on a given computation.
PROOF: Follows from assumption. []
(1)2. Consider the algorithm in Figure 3 which uses PD. The output vector of the algorithm
satisfies the accuracy property of X.
ASSUME: output[i] was changed to s #L.
PROVE: p; crashed in state s.
(2)1. The change in the output happened in line 16 of the algorithm.
PROOF: From the algorithm (there is no other line in which output is manipulated). []
(2)2. detected(p) was called where ¢ is “p; crashed in state s”.
PROOF: From step (2)1 and the algorithm (no other types of predicates are given to PD
via fork). [
(2)3. ¢ holds in the computation.
PROOF: Follows from steps (2)2 and (1)1 and the safety property of predicate detection. []
(2)4. There exists a consistent global state in the computation of the application processes
where “p; crashed in state s” holds.
PROOF: Follows from step (2)3 and the definition of “¢ holds in a computation”. []

16



(2)5. Step s is the most recent step of p;.
PROOF: Follows from step (2)4 and the fact that processes do not execute any more steps
when they have crashed. [J
(2)6. Q.E.D.
PROOF: From step (2)4 follows that p; has crashed and from step (2)5 we have that the
indicated state s is the most recent state of p;. []
(1)3. The output vector satisfies the Completeness property of X.
ASSUME: p; crashes.
PrOVE: Eventually output[i] will permanently change to a non-L value.
(2)1. For every state s which p; has entered in the computation, eventually fork(¢) with
¢ =“p; crashed in state s” will be invoked.
(3)1. ASSUME: s is the initial state.
Prove: Q.E.D.
PROOF: Follows directly from the algorithm (lines 8 and 9). [
(3)2. ASSUME: s is not the initial state.
Prove: Q.E.D.
(4)1. For s, p; sends a control message to all monitors in line 3.
PRrOOF: Follows from the algorithm and the atomicity assumption of state change
and control message sending. []
(4)2. Eventually, this control message is delivered to monitor m;.
PRroOOF: Follows from step (3)1 and the reliability assumption of communication
channels between an application process and the monitors and fair event scheduing. [
(4)3. Q.E.D.
PROOF: The delivery mentioned in step (4)2 must have happened in line 12. Hence,
from the algorithm a corresponding call to fork is made in line 13. [
(3)3. Q.E.D.
PRroor: Follows from the fact that steps (3)1 and (3)2 cover all cases. []
(2)2. p; crashes in some state s.
PROOF: Follows from the assumption and the fact that the crashed state must have been
reached. [
(2)3. Eventually, detected(¢) will be invoked for ¢ =“p; crashed in state s”.
PROOF: From step (2)1 we know that ¢ € S and from step (2)2 we know that ¢ holds
in the computation. From the liveness property of PD follows that detected($) must
eventually be invoked. []
(2)4. Q.E.D.
PRrROOF: From step (2)3 and fair event scheduling follows that the algorithm reaches line
14. From the algorithm output[i] is changed to s #L. []
(1)4. Q.E.D.
PRrROOF: Follows from steps (1)2 and (1)3 and the definition of ¥. []

17



