
RZ 3361 (# 93407) 20/08/2001
Computer Science 27 pages

Research Report

(Im)Possibilities of Predicate Detection in Crash-Affected Systems

Felix C. Gärtner
�

and Stefan Pleisch
�

�
Department of Computer Science

Darmstadt University of Technology
D-64283 Darmstadt
Germany
felix@informatik.tu-darmstadt.de

�
IBM Research

Zurich Research Laboratory
8803 Rüschlikon
Switzerland
spl@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.

�����
Research
Almaden � Austin � Beijing � Delhi � Haifa � T.J. Watson � Tokyo � Zurich

(Im)Possibilities of Predicate Detection in Crash-Affected Systems

Felix C. Gärtner

Department of Computer Science, Darmstadt University of Technology, D-64283 Darmstadt,
Germany

Stefan Pleisch

IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

Abstract

In an asynchronous system, where processes can crash, perfect predicate detection for general pred-
icates is difficult to achieve. A general predicate thereby is of the form ����� , where � and � refer
to a normal process variable and to the operational state of that process, respectively. Indeed, the
accuracy of predicate detection largely depends on the quality of failure detection. In this paper, we
investigate the predicate detection semantics that are achievable for general predicates using either
failure detector classes ���	� , �	� , or � . For this purpose, we introduce weaker variants of the
predicate detection problem, which we call stabilizing and infinitely often accurate. We show that
perfect predicate detection is impossible using the aforementioned failure detectors. Rather, �
�
and � only allow stabilizing predicate detection. Consequently, we explore alternative approaches
to perfect predicate detection: introducing a stronger failure detector, called ordered perfect, or re-
stricting the general nature of predicates.

1 Introduction

Testing and monitoring distributed programs involves the basic task of detecting whether a predicate
holds during the execution of the system. For example, a software engineer might want to detect
the predicate “variable � has changed to value

�
” to find out at what point in the execution � takes

on a bad value. Predicate detection in distributed settings is a well-understood problem and many
techniques together with their detection semantics have been proposed [7]. However, most of the
techniques have been proposed under the assumption that no faults occur in the system. Hence, most
of the methods proposed in the literature are not robust in the sense that they offer no guarantees if
faults such as message losses or process crashes occur in the system.

In an asynchronous system where processes can crash, a general predicate detection mechanism
should also detect these crash events. Chandra and Toueg [3] proposed to encapsulate the function-
ality of failure detection into a separate module and specify it using axiomatic properties. Such a
failure detector can be used to locally maintain information about the operational state of the pro-
cesses. Based on the quality of failure detection, different classes of failure detectors can be defined.
Most relevant to this paper are the classes of perfect, eventually perfect, and infinitely often accurate
failure detectors (denoted � , �
� , and ���	� , respectively) [3, 11]. Chandra and Toueg assume a
query model for their failure detectors, i.e., the application must query the failure detector to receive
information about the operational states of processes. In contrast, infinitely often accurate failure
detectors [11] assume an interrupt model. In this model, the application is notified when the fail-
ure detector changes its perception of the operational state of a process. In other words, the failure
detector sends a failure detector event if it suspects a process it has previously not suspected, or if
it does not suspect a process any more. In this paper, we use the interrupt model but show that our
results are valid in both models for failure detector classes �	� and � .

Standard predicate detection techniques aim at monitoring conditions which are composed of
predicates on the local state space of processes [7]. For instance, a predicate ������� �	� ��� � evaluates
on the variables � and � in the local state of process
 � . In this paper, we consider the detection
of predicates that are boolean combinations of predicates on the local state and predicates on the
operational state of a process. This allows us to evaluate predicates of the form � � ��� � crashed � ,
where crashed � is a predicate that is true iff (if and only if) application process
 � has crashed. Ideally,
a predicate detection algorithm never erroneously detects such a predicate and does not miss any
occurrence of the predicate in the underlying computation. However, the quality of the underlying
failure detector severely limits the quality of predicate detection. We show that perfect predicate
detection is generally impossible with failure detectors of type ���
� and �
� . Rather surprisingly,
the impossibility still holds for � . We investigate weaker variants of predicate detection which
we call stabilizing and infinitely often accurate. Briefly spoken, a predicate detection algorithm is
stabilizing if it eventually stops making false detections and it is infinitely often accurate if it has
infinitely many phases where it does not issue false detections. We also investigate two conditions
under which perfect predicate detection is solvable. The first is the existence of a novel type of
failure detector which we call ordered perfect (denoted

�
�) and which is strictly stronger that � . The

second condition imposes restrictions on the generality of predicates.
Apart from clarifying the relation between predicate detection and failure detection, this work

wishes to stress the connection between “stabilizing failure detectors” [3] and self-stabilization [8]
(which has only partly been done by other authors [15, 2]) and, hence, argue that self-stabilization
is a concept of eminent practical importance. Furthermore, our results manifest a drawback of the
approach that uses abstract failure detectors to solve problems in distributed computing, namely, that
for every new problem it is necessary to adapt the failure detector properties, a highly non-trivial task.

1

Related work. While predicate detection in fault-free environments has been intensely studied
[7], solving the task in faulty environments is not yet very well understood. To our knowledge,
Shah and Toueg [17] were the first to investigate this by adapting the snapshot algorithm of Chandy
and Lamport [4] with a simple timeout mechanism. Chandra and Toueg [3] later argued to define
the functionality of failure detection in an abstract way and proposed a rich set of failure detector
classes. However, these classes were meant to help solve the consensus problem and not the problem
of predicate detection. Garg and Mitchell [10] investigate the predicate detection problem again and
define an infinitely often accurate failure detector, i.e., a failure detector which is implementable
in asynchronous systems [11], but they restrict the scope of the predicates to set-decreasing and
conjunctive predicates. A predicate is set-decreasing whenever it holds for a set of processes, it
also holds for a subset of these processes. For example, “no token” is a set-decreasing predicate.
The set-decreasing property is used to ensure liveness of the predicate detection mechanism by
ignoring those processes which are currently suspected. Conjunctive predicates can be expressed
as the conjunction of local process predicates and channel predicates. Furthermore, channels are
assumed to be send-monotonic, i.e., a false predicate does not become true by only sending messages.
To our knowledge, our work is the first to investigate the relationship between predicate detection
and failure detection in the general case.

While it is not clear whether Garg and Mitchell [10] or Shah and Toueg [17] consider predicates
which contain references to the operational state of processes, Gärtner and Kloppenburg [12] ex-
plicitly allow these types of predicates but restrict themselves to environments where only infinitely
often accurate failure detectors are available. Other authors have investigated the use of perfect fail-
ure detectors to detect special predicates, e.g., distributed deadlocks [20] or distributed termination
[18].

The observation that perfect failure detectors do not allow to solve all problems which are solvable
in synchronous systems has been previously made by Charron-Bost, Guerraoui, and Schiper [6] by
exhibiting a problem that is solvable in synchronous systems but is not solvable in asynchronous
systems augmented with perfect failure detectors (the strongly dependent decision problem). While
Charron-Bost et al. [6] argue that this result has practical consequences with respect to the efficiency
of atomic commitment, our result shows that there exists a practically relevant problem, namely
predicate detection, which suffers from the deficiencies of perfect failure detectors.

Paper organization. After introducing the system assumptions in Section 2, we define three dif-
ferent semantics for the predicate detection problem in Section 3. In Section 4, we consider systems
where crash failures occur, augmented with infinitely often accurate (Section 4.2), with eventually
perfect (Section 4.3), and perfect failure detectors (Section 4.4). Our focus is on a system with
one application process and one observer. We then generalize to multiple application processes and
observers in Section 5. Finally, Section 6 concludes the paper and states potential future work.

2 System Assumptions

2.1 System Model

We consider a system with � application processes
 � � � � � �
�� and � monitor processes
� � � � � � � � �

(i.e., observers) whose task is to monitor the execution on the application processes. We denote the
set of application processes by � and the set of monitor processes by 	 . If it is clear from the context
we will refer to application processes simply as “processes” and to monitor processes as “monitors”.
� forms the application system, whereas ��
�	 is called the observation system.

Processes communicate by message passing via FIFO channels in a fully connected network.

2

Communication is reliable, i.e., no messages are lost, duplicated, or altered. Our system is asyn-
chronous, i.e., no boundaries on communication delays nor on relative processor speeds exist.

We use a discrete global clock to simplify the presentation of our model [3]. However, no process
has access to this clock, it is merely a fictional device. For simplicity we take the range

�
of the

clock to be the set � of natural numbers.
Application processes can fail by crashing. Once a process has crashed, it does not recover

any more during the execution. A failure pattern � is a mapping from
�

to the powerset of � ,
where ��� � � specifies the set of application processes which have crashed up until time � . We de-
fine crashed � ��� �	��
 � � ��� � � and correct � �
� � ��� crashed � �
� . If
�� crashed � �
� we call it
faulty. Consequently, a non-faulty process is called correct. For simplicity, we assume that monitor
processes do not fail but we place no restriction on the number of faulty application processes.

2.2 Failure Detectors

Each monitor process has access to a local failure detector module that provides (possibly incorrect)
information about failures that occur on application processes [3]. A failure detector history � is a
mapping from 	�� �

to the powerset of � . The value of ��� � � � � � denotes the value of the failure
detector module on monitor

� �
at time � . If
 � ����� � � � � � we say that process
 � is suspected by

monitor
� �

at time � .
A failure detector � maps a failure pattern to a set of failure detector histories. Intuitively,

��� ��� is the set of histories which the failure detector could have produced in runs with failure
pattern � . Failure detectors are defined in terms of a completeness and an accuracy property. These
properties restrict the set of failure detector histories that are possible given a specific failure pattern.
The completeness property requires that a failure detector eventually suspects processes that have
crashed, while the accuracy property limits the number of mistakes a failure detector can make. We
recall the definitions of accuracy and completeness which are relevant to this paper [3, 11]:

� (strong completeness) Eventually every application process that crashes is permanently sus-
pected by every monitor process. Formally:

� � � � ������� ��� � � ��� � � �
�� crashed � �
� � � � � 	 � � � � �!� �
��"�#� � � � � �
� (strong accuracy) No application process is suspected before it crashes. Formally:

� � � � �	����� �
� � � �$� � � �
�� �����%� � � � � � � 	 �
#&�"�#� � � � �
� (eventual strong accuracy) There is a time after which correct application processes are not

suspected by any monitor.

� � � � �	�"��� ��� � � �$� � � � � �'�(� � �
)� �!����� � � � � � � � 	 �
*&�"��� � � � � �
� (infinitely often accuracy) Correct application processes are not permanently suspected by any

monitor.

� � � � �	����� �
� � � � � 	 � �
�� correct � ��� � � ��� � �
)�"��� � � � �,+ � � � - � �
*&�"��� � � � � �
The failure detectors we consider in this paper all satisfy strong completeness. A perfect failure
detector additionally satisfies strong accuracy. An eventually perfect failure detector satisfies even-
tual strong accuracy instead of strong accuracy. Finally, an infinitely often accurate failure detector
satisfies strong completeness and infinitely often accuracy.

3

Failure detectors are grouped into classes that represent the set of failure detectors satisfying the
given properties. We denote the class of all perfect failure detectors by � , the class of all eventually
perfect failure detectors by �
� , and the class of all infinitely often accurate failure detectors by
���
� .

Failure detectors are defined as passive modules, that can be queried at any time by an application
[3]. This definition corresponds to a query model for failure detectors. � and �	� are defined in this
model. On the other hand, ���
� [11] makes no sense in the query model because, intuitively, an
application could always query the failure detector module in periods when it is inaccurate. Conse-
quently, infinitely often accurate failure detectors implicitly assume an interrupt model, where every
change in the perception of the operational state of a process is notified to the application.

To enable the use of the same algorithms for predicate detection for � , �
� , and ���	� , we
assume the interrupt model in this paper. However, we show later that the interrupt model and the
query model are equivalent for failure detector classes � and �	� . Hence, our results for � and �
�
are also valid in the query model.

2.3 Algorithms and Runs

An algorithm
�

consists of a set of deterministic automata, one for each process. Following Chandra
and Toueg [3], we define an execution or run � of

�
using failure detector � as a tuple � �

� � � ��� � � � � � � � , where � is a failure pattern, ��� ����� �
� is a failure detector history of � for
failure pattern � , � is a set of initial states of the application processes, � is an infinite sequence
of steps of the algorithm, and � is a list of increasing time values indicating when the steps in �
occurred. Runs must satisfy the usual fairness and well-formedness requirements [3]: (1) no process
executes a step after crashing, (2) correct processes take an infinite number of steps, and (3) every
message that was sent is eventually received.

We give our algorithms in an event-based notation and thus assume that a local FIFO event queue
is part of the local state of every process. Within an execution step, a process takes an event from
the queue, performs a state transition according to the event, and then may send a message or add a
new event to the queue. Message arrivals are treated as events too, i.e., when a message arrives, an
appropriate event is added to the queue. It is “received” by the process when this event is processed.

In contrast to Chandra and Toueg [3], we assume interrupt-style failure detectors, i.e., whenever
the value of ��� changes, a failure detector event is added to the local queue of the monitor process.
This event contains the ID of the monitored process, whose perceived operational state has changed,
and the description of the state change (i.e., whether it is still suspected or not). Consequently, the
interrupt model allows processes to make a special step, in which no event is taken from the queue
but a failure detector event is added.

2.4 Interrupt-Style vs. Query-Style Failure Detectors

In this section we compare the query and the interrupt model for failure detectors and show that they
are equivalent if perfect and eventually perfect failure detectors are considered.

We define a property of the system as a set of executions. A system satisfies a property iff every
execution which is possible by the system is an element of the property. If a property � is considered
as a problem specification, we say that an algorithm

�
solves problem � iff

�
satisfies � . More

precisely, we say that algorithm
�

solves problem � using failure detector � iff all executions of�
using failure detector � are an element of � . Let 	 be a class of failure detectors. We say that�
solves � using 	 iff for all �	�
	 ,

�
solves � using � . Finally, we say that problem � can be

solved using 	 iff for all failure detectors �	��	 exists an algorithm
�

such that
�

solves � using
� .

4

Intuitively, the interrupt model is at least as strong as the query model, as it makes the addi-
tional assumption that a process is notified of all perception changes of the failure detector (see
Section 2.3). Consequently, correct algorithms in the query model can be easily adapted to the
interrupt model.

Theorem 1 If problem � can be solved using failure detector class 	 in the query model, then �
can be solved using 	 in the interrupt model.

PROOF SKETCH: An algorithm
� � which solves � in the query model can be transformed into an

algorithm
�

for the interrupt model as follows: Whenever a failure detection event is processed from
the local event queue,

�
manipulates a local suspicion list. The algorithm of

� � can be incorporated
into

�
by changing the commands which query the failure detector to instead query the current value

of the suspicion list.

The transition from the interrupt model to the query model is more difficult. Interestingly, we can
show that both models allow to solve the same classes of problems if perfect or eventually perfect
failure detectors are used.

To see this, consider an algorithm
�

which solves a problem � in the interrupt model. The
algorithm is notified about every state change of the failure detector module. Now consider the same
algorithm running in the query model. In the query model, the failure detector is passive and does
not issue events. The closest we can come to the interrupt model is to add a converter task to

�

which queries the failure detector as often as possible and adds failure detection events to the local
queue whenever it perceives a state change of the failure detector. In the case of perfect failure
detectors, the transition obviously works fine: A perfect failure detector changes its state at most
once per application process. Whenever this occurs,

�
will be notified of this state change as soon

as the converter task is scheduled again. While this may happen “later” as in the interrupt model,
there is no difference in

�
’s perception of the failure detector. A perfect failure detector in the query

model “looks the same” in the interrupt model (see Figure 1).
The same arguments also apply to eventually perfect failure detectors. The only difference is

that due to unfortunate scheduling of the converter task, false suspicions may go unnoticed. Indeed,
assume that failure detector module � � on monitor

� �
suspects process
 � , but later does not suspect

 � any more. If in the query model the application running on
� �

has never queried the failure detector
in the meantime, it is not aware of the (erroneous) suspicion of
 � . Hence, while the detection latency
may increase, the number of false detections may actually decrease.

Theorem 2 Let 	 be either the class �
� of eventually perfect or the class � of perfect failure
detectors. Then the following holds: If problem � can be solved using failure detector class 	 in the
interrupt model, then � can be solved using 	 in the query model.

Notes on proof style. Proofs are written in a structured style similar to proof trees of interactive
theorem proving environments. This approach is advocated by Lamport who promises that this style
“makes it much harder to prove things that are not true” [14]. The proof is a sequence of numbered
proof steps at different levels. Every proof step has a proof which may be refined at lower levels by
additional proof steps. For example, proof step

� � � � is the second proof step on level 1. Proofs may
also be read in a structured way, for example, by reading only the top level proof steps and going
into sublevels only when necessary.

PROOF SKETCH: We start off with an algorithm
�

solving � in the interrupt model. An algorithm
� �

for the query model is constructed as follows: The converter task (see Figure 2) is added to
�

which
repeatedly queries the failure detector module and inserts events into the local queue if the output

5

up

interrupt style
failure detector

up

down

up

up

down

down

down

down

up

periodic queries

query style
failure detector

simulating interrupt
style failure detector

notify A

notify A

operational

pstate of
operational

state of p

converter task

Figure 1: Transition from the interrupt model to the query model of failure detectors.

At monitor
�
, run algorithm � concurrently to the following task:

wasSuspected � � false
loop forever

suspected � ��� query failure detector for � � �
if � suspected �� wasSuspected � then

if � 	 wasSuspected � then
� trigger event “
 suspects process � � ” �
wasSuspected � � true

else
� trigger event “
 rehabilitates process � � ” �
wasSuspected � � false

endif
endif
wait �
�

end loop

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 2: Converter task which generates interrupt-based output from query-based perfect and even-
tually perfect failure detectors concerning the operational state of a process
 � .

(i.e., suspected or not suspected) of the failure detector has changed since the last query. We need to
show that

� � solves � in the query model if either perfect or eventually perfect failure detectors are
used.
The idea of the proof is to take an arbitrary run � � of

� � in the query model and show that there is a
run � of

�
in the interrupt model which from the point of view of the algorithm is indistinguishable

(i.e., it has the same failure pattern and the same sequence of steps). Since
�

solves � in the interrupt
model, � � � . But because the algorithm is the same and � � is indistinguishable from � , � � � � .
Hence, every run � � of

� � satisfies � and so
� � solves � .

1
� � � � . There exists an algorithm

�
that solves � using 	 in the interrupt model.

6

PROOF: From antecedent of the theorem and the definition of “can be solved”. �
2

� � � � . Construct
� � by adding the task of Figure 2 to

�
.
� � solves � using 	 in the query model.

PROOF SKETCH: Algorithm
�

was built for the interrupt model and now receives input from the
concurrent task. Algorithm

�
and the task together form the algorithm

� � running in the query
model. We have to prove that any run of

� � satisfies � .
The proof proceeds in three proof steps. In proof step

� � � � , we take an arbitrary run � � of
� � in

the query model and construct a run � in the interrupt model that is “indistinguishable” to
�

. The
only difference between � and � � is the failure detector history. It is also shown that the failure
detector history in � belongs to the same failure detector class as the history in � � .
In proof step

� � � � we assert that the newly constructed run � satisfies � which follows from
proof step

� � � � . This is used by proof step
� � � � to assert that � � satisfies � because � and � � are

indistinguishable to
�

. Since � � satisfies � and we have not restricted � � , � � satisfies � .
2.1

� � � � . Take an arbitrary run � � � � � � � � �� � � � � � � � � � � of
� � in the query model. Then there exists

a run � � � � � ��� � ��� � � � � of
�

in the interrupt model such that:
1. � � � �
2. � � ����� � � �
3. � � � � without steps of the concurrent task.
4. � � � � without the time references from steps of the concurrent task.

PROOF SKETCH: We only prove this proof step for the case 	 � �
� since the proof for perfect
failure detectors is a special case.
Among the steps taken in � � , only a subset of steps contains an access to the failure detector for
information about the operational state of process
 . This access is performed by the converter
task and results1 in the addition of a new event into the local event queue of

�
. Consider

an arbitrary such step � � . The output of the failure detector has changed time �
� � before the
converter task has queried the failure detector. In the interrupt model, changes in the output of
failure detectors are immediately added to the local event queue. Hence, from � �� we construct
� � by “delaying” this state change in � �� for ��� � . Applying a delay to all state changes in
� �� results in ��� , which causes failure detection events for

�
in the interrupt model at exactly

those points in time as
�

would experience them through the converter task in the query model.
Proof step

� � � � shows how to calculate �
� � .
The following proof steps show that the resulting failure detector history � � belongs to the
same failure detector class as � �� . This should be clear from the following observation: The
transformation may omit state changes in � �� which are never witnessed by

�
in the query

model. Reducing false suspicions, however, is usually desirable and does not violate the defini-
tion of �	� .

2.1.1
� � � � . Consider the sequence of steps � � of � � and construct a sequence of steps � �� in which

only steps are taken into account where the converter task issues failure detection events
(i.e.,

� � queries the failure detector for process
 and receives “new” information about

).
Let � �� be an arbitrary step in � �� executed at time � �� . Then the value of � �� regarding

changed at some time � ���� ��� �� .

PROOF: Follows from the code of the converter task. �
2.1.2

� � � � . Define � � as � �� in which the changes are delayed by �
� �� (see Figure 3). Now � � �
��� ��� .

PROOF: By definition, correct processes take infinitely many steps. This implies that the
converter task queries the failure detector infinitely often. Hence, strong completeness is
achieved in � � . The proof step follows from

� � � � and the definition of the class �	� . �
1If the output of the failure detector has changed since the last query.

7

2.1.3
� � � � . � is a run of

�
in the interrupt model.

PROOF: Follows from the fact that steps of the concurrent task are excluded in � and � , and
proof step

� � � � . �
2.1.4

� � � �
. Q.E.D.

PROOF: Since
 was an arbitrary faulty process, step
� � � � can be done for all faulty processes.

2.2
� � � � . � satisfies � .

PROOF: From proof step
� � � � and the fact that

�
solves � using 	 (proof step

� � � �). �
2.3

� � � � . � � satisfies � .
PROOF: Proof step

� � � � proves that with respect to
�

, � � is indistinguishable to � (i.e.,
�

receives input events at exactly the same points in time). So
�

must have the same behavior in
� � as it has in � . The proof step then follows from proof step

� � � � . �
2.4

� � � �
. Q.E.D.

PROOF: Follows from the fact that we have not restricted � � , i.e., the statement holds for every
run of

� � in the query model. �
3

� � � � . Q.E.D.
PROOF: Directly from proof step

� � � � and the definition of “can be solved”. �

query
model

R’

H’

R

H

interrupt
model

F

∆ ∆

1 2 3

t’t’1 2 ∆ t’3

s’ s’ s’

D

D

Figure 3: For eventually perfect failure detectors the failure detector history � �� in the query model
can be transformed into an indistinguishable failure detector history � � in the interrupt model.

Unfortunately, Theorem 2 cannot be extended to failure detector class ���
� . To understand
the intuitive reason for this, consider the following scenario: A monitor

�
wants to observe the

operational state of an application process
 . The desired detection property is that if
 is correct
and

�
has noticed that
 is down, it must eventually refute this notice and state that
 is up again.

Detecting this in the interrupt model using any � � ���	� is rather simple as the failure detector
will not permanently suspect
 (this is guaranteed by the infinitely often accuracy property) and the
change of state will be noticed. However, in the query model an algorithm may always query the
failure detector exactly within those periods where � is inaccurate and suspects
 again.

Theorem 3 There exists a problem � that can be solved using failure detector class ���
� in the
interrupt model, but cannot be solved using ���
� in the query model.

8

In the following, when we refer to failure detectors, we always assume the interrupt model, unless
explicitly stated otherwise. Since it is equivalent to the query model if perfect or eventually perfect
failure detectors are used, the results obtained for these types of failure detectors also hold in the
query model. If infinitely often accurate failure detectors are considered, the interrupt model is in a
sense “stronger” than the query model. This however means that any impossibility result obtained
for these types of failure detectors in the interrupt model directly hold in the query model too. But
even for infinitely often accurate failure detectors, algorithms developed in the query model will also
work in the interrupt model.

2.5 Comparing Failure Detectors

Intuitively, a failure detector � � is stronger than a failure detector � � (denoted � � � � �) if there
exists a distributed algorithm that can be used to emulate � � using � � [3]. If � � � � � and � � � � �
we write � ���� � � and say that � � and � � are equivalent. If � � � � � but not � � � � � we say that
� � is strictly stronger than � � and write � ��� � � . The relation

�
can be defined for failure detector

classes in an analogous way. From the literature [3, 11] we know that the following relations hold:
� � �
� � ���
� .

3 Predicate Detection

Every application process
 � has a local state � � consisting of an assignment of values to all of its
variables. A global state � ��� � � � � � � � � �	� is a set containing exactly one local state � � from every
application process
 � . State changes are assumed to be atomic events local to some process. For an
observer of the application system, a computation should be observed as a sequence of global states
� � � � � � � � � , where � �
 � results from � � by executing a local event on some process. Global state � �
denotes the initial global state of this system.

Given some global predicate � over the global state � of
 � � � � � �
 � , we would like to have an
algorithm which answers the question of whether or not � holds in a given computation. Whenever
an event occurs at some application process

� , a control message about this event is sent from
�� to
all the monitors (the normal computation messages are called application messages) (see Figure 4).
One generally assumes that the execution of the event and the sending of the control message execute
as one atomic action.

application system

observation system

process

application messages

control messages

Figure 4: Observation and application system. Application processes exchange application mes-
sages, whereas control messages are sent from application to monitor processes.

Every property (i.e., every set of executions) can be written as the intersection of a safety property

9

and a liveness property [1, 13]. Informally, a safety property states that “something bad never hap-
pens”, i.e., it rules out a set of execution prefixes which are not allowed to occur. Mutual exclusion
is an example of a safety property since it rules out all executions which end with a state where two
processes are in their critical sections at the same time. On the other hand, a liveness property states
that “something good will eventually happen”, i.e., it requires that the suffix of every execution be
of a certain form. Termination is the standard example of a liveness property because it mandates
that every execution contains a termination state. We will use safety and liveness properties to define
different classes of predicate detection semantics in the next section.

3.1 Three Different Detection Semantics

We use the symbols � (“always”) and � (“eventually”) here in the following way: Let � be a safety
property. We denote by � � the property in which � eventually holds, i.e., the set in which every
execution in � can be prefixed by an arbitrary but finite sequence of states. We denote by ��� � the
property where � holds infinitely often, i.e., the set consisting of all traces which can be constructed
from (infinitely) interleaving finite sequences from � and � � . Note that � � � � � ��� � .

A detection algorithm for a global predicate � should notify us by triggering a detection event
on the monitor processes once � holds in the computation. Formally, we seek an algorithm which
satisfies the following two properties:

� (safety) If a monitor triggers a detection event then � has held in the computation, and
�

(liveness) once � holds in the computation, a monitor will eventually trigger a detection event.

We assume that the algorithm triggers a positive signal on detection but we also allow the algorithm
to revoke its detection by issuing a “previous detection was wrong” signal to the application. If this
occurs, we say that the algorithm undetects the predicate. Note that we detect whether the predicate
� held, i.e., we detect a stable predicate even if � is unstable. A predicate is stable, if once it holds
it holds forever.

Definition 1 (detection semantics) Let � and
�

denote the safety and liveness properties of predi-
cate detection. We define the three detection semantics Sem � , Sem � , and Sem � as follows (where �
denotes set intersection):

1. Sem � � �
� � (perfect)

2. Sem � � �
� � � (stabilizing)

3. Sem � �
�

� ��� � (infinitely often accurate)

To illustrate the use of these detection semantics, assume that � is a debugging condition, i.e.,
a “bad state” which should not occur. On detection of such a state, the software developer usually
wants to stop the application system and analyze the execution which caused the bad state. In this
context, we would ideally like a detection algorithm Alg for predicate � to satisfy Sem � , i.e., Alg
will make no mistakes and not miss any occurrence of � . We call this perfect predicate detection.
However, this is sometimes impossible to achieve. In particular, if � contains conditions about the
operational state of processes, the detection algorithm might mistakenly detect � , i.e., violate � .
In these cases Alg should at least satisfy Sem � , i.e., Alg may (erroneously) detect the predicate and
later undetect it again. We call this stabilizing predicate detection because it is guaranteed that the
algorithm will eventually stop making wrong detections.

Note that from the user’s point of view there is no immediate way to distinguish between a correct
and an incorrect detection (this may only be achieved through other means, e.g., through halting the

10

system and inspecting it). Stabilizing predicate detection may, however, still be useful, e.g., in
situations where false detections merely effect the efficiency of an application (not its correctness)
or in situations where achieving Sem � is provably impossible. Revisiting our debugging example
the developer may want to detect a predicate � in his distributed application in order to identify
an invalid state of the application. Detection semantics � � � � are sufficient in most cases, as the
developer can manually verify whether the predicate detection algorithm has been accurate. If it has
not been, the predicate detection is continued.

But even Sem � is sometimes impossible to satisfy, i.e., Alg may make infinitely many mistakes
about � holding. In this case we would prefer that Alg behaves according to Sem � , i.e., Alg contin-
uously switches between phases where possible detections are accurate and phases where mistakes
regarding � are made. We call this infinitely often accurate predicate detection. This means that
if � never holds then every detection event will be followed by an undetection event. Semantics
� � � � offer close to no guarantees and, hence, can be considered as a “best effort” specification. But
at least it is better than ignoring the safety part of the specification overall (i.e., we rule out trivial
predicate detection which always issues a detection event even in cases where � never holds). Note
that Sem � �

Sem � �
Sem � .

The detection algorithms we study in the following sections all have a common architecture (see
Figure 5). In particular they rely on the existence of a “low level” failure detection service which
satisfies certain properties, e.g., those of �
� or � . The goal of the algorithms is to provide the best
possible detection semantics,

failure detection
service

detection interface

predicate detection
algorithm

initializedetect/undetect

control messages

suspect/rehabilitate

Figure 5: Architecture of the predicate detection algorithms at monitor � � .

3.2 Global Predicates in Faulty Systems

In systems with crash faults, it is a natural desire to detect a class of predicates which makes no
sense in fault-free systems because we now additionally want to detect predicates involving the
operational state of processes. For example, we may want to detect the fact that “process
 � crashed
while holding a lock.” To express this information within a global predicate we assume that the
operational state of a process is explicitly modeled by a boolean flag crashed which is part of the
global state. More specifically, crashed � is true iff
 � has crashed. Using this flag, we formalize the
above predicate as lock � � true � crashed � .

With respect to the truth value of a predicate on the global state, the crashed variables are treated
just like other variables local to the processes. Let � denote a local predicate which only references
local variables of a process, e.g., ��� � � � � , and let � denote a predicate which only contains
references to the operational state of a process, e.g., ��� crashed � . To detect � we can use a
standard mechanism for predicate detection in fault free systems. Conversely, to detect � we can use

11

a (reliable) failure detection algorithm. However, global predicates can be constructed from boolean
combinations of � and � . If we have disjunctions of � and � , e.g., � � ��� � crashed � , it is sufficient
to run existing detection algorithms for � and � independently and issue a detection event as soon
as one of the algorithms issues such an event. However, global predicates that are a conjunction of
� and � are more difficult to detect and are the focus of this paper.

The following examples illustrate the types of predicates we address. Let ec � denote a local
variable of
 � which stores the sequence number of events (“event count”) on
 � .

� ec � ��� � crashed � , i.e., “
 � crashed after event 5”

� ec � � � � crashed � , i.e., “
 � crashed immediately after event 5”

� ec ��� � � crashed � , i.e., “
 � crashed before reaching event 5”

� ec � � � ��� crashed � , i.e., “
 � executed event 5”.

Although we have not restricted the class of predicates, it should be noted that only predicates are
detectable that do not explicitly depend on global time. For instance, the predicate � � “
 � executed
event � � more than 10 seconds ago” is impossible to detect in an asynchronous system model where
no notion of global time exists. In analogy to Charron-Bost et al. [6], we call predicates that do not
refer to real time time free.

4 Predicate Detection in Faulty Systems

We now consider an asynchronous system where crash faults can happen and study what types of
detection semantics (i.e., � � � � , � � � � , or � � � �) are achievable using different classes of failure
detectors. For simplicity, we will restrict our attention to the case where � � � ��� , i.e., a system
with two processes only, namely an application process and a monitor process. We discuss the case
where � � � - � in Section 5.

If faults can happen, the predicate detection algorithm must cater for the fact that a failure detector
issues a suspicion or rehabilitation of a process. A process is rehabilitated if it has been erroneously
suspected and the failure detector revokes its suspicion. Figure 6 shows a generic detection algorithm
for this case. A boolean flag � (“history”) is used to record the type of the most recent event which
was triggered at the interface.

4.1 Plausible Failure Detector

Generally, the failure detector module accessed by the monitor issues suspicion and rehabilitation
events for a process
 � . We define the following two properties concerning these events:

� (alternation) Suspicion and rehabilitation events for
 � alternate, i.e., the failure detector mod-
ule never issues two suspicion events without issuing a rehabilitation event inbetween, and
vice versa.

� (plausibility) Reception of a control message from
 � is only possible in phases where
 � is not
suspected.

We argue later that these properties are fundamental to the predicate detection problem. Based on
these properties, we define a plausible failure detector as follows:

Definition 2 (plausible failure detector) A plausible failure detector is a failure detector which sat-
isfies alternation and plausibility.

12

On every monitor
�
:

variables:� ��� � � � � � � � � ��� init � � � � � � � � � �	�
crashed
 � � � ��
 array of � true,false � init � false � � � � � false �� � ��� crashed ��� true � false � init � by application �� ��� true � false � init false

algorithm:
upon � a message � � � � � arrives � do
� update

�
 �
 according to � �
if � � � � crashed ��� 	 � then� � � true
� trigger detection event �

elsif 	 � � � � crashed ��� � then� � � false
� trigger undetection event �

end
upon � � � is suspected

or rehabilitated by failure detector � do
� update crashed
 �
 accordingly �
if � � � � crashed ��� 	 � then� � � true
� trigger detection event �

elsif 	 � � � � crashed ��� � then� � � false
� trigger undetection event �

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 6: Generic algorithm for predicate detection in faulty environments.

13

On every monitor
�
:

variables:
suspects set of � processes � init

�
wasSuspected ��� true � false � init false

algorithm:
upon �
 rehabilitates � �

or a control message from � � arrives � do
wasSuspected � � false
if � ��� suspects then

wasSuspected � � true
suspects � � suspects � � � � �
� trigger event “rehabilitation of � � ” �

endif
if � control message was received in line 2 � then
� deliver control message �
if wasSuspected then

suspects � � suspects � � � � �
� trigger event “suspicion of � � ” �

endif
endif

upon �
 suspects � � � do
if � � �� suspects then

suspects � � suspects � � � � �
� trigger event “suspicion of � � ” �

endif

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Figure 7: Implementation of a wrapper that makes any failure detector � in ���
� or �	� plausible
in asynchronous systems. Note that line 2 and 17 refer to events generated by � while in lines 8,
11, 14, and 20 events at the interface of the plausible failure detector are triggered which are then
processed at lines 2 and 11 in the algorithm of Figure 6.

14

Figure 7 gives the pseudocode that converts failure detectors in ���
� or �
� into their plausible
equivalent. For this purpose, the failure detector also takes into account the control messages of
the processes. Indeed, if a control message from process
 � is received while the failure detector
suspects
 � , then
 � is rehabilitated. However, this requires that the delivery of control messages is
included into the wrapper which constitutes the plausible failure detector (see Figure 8).

plausible
failure detector

standard failure
detector

suspicion/rehabilitation arrival of control message

delivery of
control messages

Figure 8: Interface of a plausible failure detector.

As shown in the following lemma, for most failure detector classes a plausible failure detector
still belongs to the same class of failure detectors as its non-plausible equivalent.

Lemma 1 Let � be either failure detector class ���
� or �
� and let
�� denote the set of failure

detectors from � which are plausible. Then � � � �� .

PROOF SKETCH: A failure detector is rendered plausible by wrapping the failure detector and the
delivery module for control messages into a separate module. If a control message arrives after a
suspicion event has been generated, a rehabilitation event is passed to the detection algorithm before
delivering the control message. Clearly, the wrapper can be implemented in asynchronous systems.
ASSUME: Let � denote either ���
� or �
� and let � be a failure detector from � .
PROVE: The algorithm in Figure 7 issues events that satisfy the requirements of

�� .

1
� � � � . The algorithm satisfies strong completeness.

1.1
� � � � . ASSUME:
 � crashes.

PROVE: An event “suspicion of
 � ” is eventually triggered.
1.1.1

� � � � . Eventually � suspects
 � .
PROOF: From the fact that � satisfies strong completeness. �

1.1.2
� � � � . CASE:
 � &� suspects

PROOF: Directly from the algorithm (lines 17–21). �
1.1.3

� � � � . CASE:
 � � suspects
PROOF: Since suspects �

�
initially and the only place where
 � can be added to suspects

is line 13 or 19 of the algorithm it follows, that the algorithm must previously have issued a
suspicion event in line 14 or 20. �

1.1.4
� � � �

. Q.E.D.
PROOF: Steps

� � � � and
� � � � cover all cases. �

1.2
� � � � . Q.E.D.

PROOF: From step
� � � � . �

2
� � � � . The algorithm satisfies the accuracy requirement of � .

2.1
� � � � . CASE: � � ���	�

PROOF SKETCH: We must show that a non-crashed process is not suspected permanently.

15

2.1.1
� � � � . ASSUME:
 � is correct and there is a time � where
 � is suspected in line 14 or 20 but

never rehabilitated in line 8 after � .
PROVE: false

PROOF: From the infinitely often accuracy property of � and since
 � is correct, eventually

 � is rehabilitated by � in line 2. Since
 � has been previously suspected, it is an element of
suspects and hence the algorithm issues a rehabilitation event in line 8, a contradiction. �

2.1.2
� � � � . Q.E.D.

PROOF: Indirectly from step
� � � � . �

2.2
� � � � . CASE: � � �	�

PROOF SKETCH: We must show that there is a time after which a correct process
 � is not
wrongly suspected in line 14 or 20.

2.2.1
� � � � . There is a time � after which � does not suspect a correct process anymore, i.e., after � ,

process
 � has been rehabilitated in line 2 and is never suspected in line 17.
PROOF: From the eventual strong accuracy of � . �

2.2.2
� � � � . There are at most finitely many control messages in transit from
 � to the monitor at time

� .
PROOF: From the fact that
 � has only run for a finite time. �

2.2.3
� � � � . Consider the arrival of the first control message � after time � . Following this arrival

lines 8 and 14 are not executed.
PROOF: From step

� � � � follows that
 � &� suspects when � arrives. Hence, line 8 is not
executed. From the use of the wasSuspected flag follows that the condition in line 12 is false
and so line 14 is not executed either. �

2.2.4
� � � �

. Q.E.D.
PROOF: From step

� � � � and repeatedly applying step
� � � � we can show that after � ,
 � is not

suspected anymore in line 14. �
2.3

� � � � . Q.E.D.
PROOF: Steps

� � � � and
� � � � cover all cases. �

3
� � � � . The algorithm satisfies alternation.

PROOF SKETCH: We prove this claim only for the case where a suspicion is followed by a reha-
bilitation. The converse is analogous.

3.1
� � � � . ASSUME: � is a suspicion event of the algorithm and � � is the following event issued by the

algorithm.
PROVE: � � is a rehabilitation event.

PROOF: Since � is a suspicion event, it was generated in line 14 or 20 of the algorithm. This
means that
 � � suspects and another suspicion event is only generated if the opposite is true.
This can be only performed by executing line 7. This implies execution of line 8 and thus
triggering a rehabilitation event. Hence, � � is a rehabilitation event. �

3.2
� � � � . Q.E.D.

PROOF: From step
� � � � . �

4
� � � �

. The algorithm satisfies plausibility.
4.1

� � � � . ASSUME: Line 11 is executed.
PROVE: If there has been at least one event issued, then the most recent event issued was

a rehabilitation event.
PROOF: Assume there has been at least one event issued. If this was a suspicion event, then
at line 2
 � � suspects, otherwise
 � &� suspects. In the latter case we have shown the claim
already. In the former case the algorithm issues a rehabilitation event in line 8 prior to delivering
the control message. �

4.2
� � � � . Q.E.D.

PROOF: From step
� � � � . �

16

5
� � � � . Q.E.D.

PROOF: From steps
� � � � to

� � � �
and Definition 2. �

Transforming a failure detector � in � into a plausible failure detector using the algorithm in
Figure 7 may result in a weaker failure detector. Indeed, assume a system with one process
 and
one monitor

�
, where
 has sent a control message msg and then crashes. Before

�
receives the control

message, it detects the crash of
 . On reception of msg, the plausible version of � rehabilitates

in order to receive msg. Later, � eventually suspects
 again. However, a failure detector in � is
not allowed to make mistakes, i.e., can never rehabilitate processes. Hence, if � is made plausible
with algorithm in Figure 7, it is no longer in class � . This is the reason why Lemma 1—using this
particular wrapper—does not hold for failure detectors in � .

4.2 Using an Infinitely Often Accurate Failure Detector (
�����

)

Consider a purely asynchronous system in which crash faults can happen. Garg and Mitchell [11]
have shown that a failure detector in ���
� can be implemented in these systems, e.g., an infinitely
often accurate failure detector. Additionally we assume that such a failure detector is plausible. In
such cases predicate detection is only achievable with semantics Sem � .

Theorem 4 In asynchronous systems with crash failures and any failure detector in ���
� it is (a)
possible to satisfy detection semantics Sem � but it is (b) impossible to satisfy detection semantics
Sem � and Sem � for general predicates without a failure detector strictly stronger than ���
� .

PROOF SKETCH: We prove (a) using the standard algorithm in Figure 6. The reliable channel as-
sumption ensures satisfaction of the liveness requirement of Sem � and the plausible infinitely often
accuracy of failure detection ensures the safety requirement of Sem � . Part (b) is proven indirectly:
We assume that an algorithm satisfying Sem � exists and use it to construct a failure detector that
allows to solve consensus, a contradiction to the impossibility result by Fischer, Lynch and Paterson
[9].
ASSUME: The system model is deterministic (i.e., allows no randomization), asynchronous with

crash failures and any failure detector in ���	� .
PROVE: It is (a) possible to satisfy detection semantics Sem � but it is (b) impossible to satisfy

detection semantics Sem � and Sem � for general predicates.
1

� � � � . A plausible failure detector in ���	� is available.
PROOF: Follows from Lemma 1. �

2
� � � � . General predicates are detectable with semantics Sem � in the given system model.

2.1
� � � � . The algorithm in Figure 6 satisfies the liveness requirement

�
of the predicate detection

problem.
ASSUME: � holds within the computation.
PROVE: The algorithm eventually triggers a detection event in line 6 or 16.

2.1.1
� � � � . Without loss of generality � has the form � � � where � refers to the local state of
 � and

� refers to the operational state of
 � .
 � sends control messages to the monitor about the
state sequence resulting in state � .

PROOF: From the assumption that � holds and the algorithm. �
2.1.2

� � � � . Eventually, these messages arrive at the monitor and the monitor constructs a sequence
of global states resulting in a state where � holds.

PROOF: From step
� � � � , the FIFO reliable channel assumption and the algorithm. �

2.1.3
� � � � . CASE: � has the form crashed � .

2.1.3.1
� � � � .
 � crashed in a state where � held.

PROOF: From assumption that � holds in the computation. �

17

2.1.3.2
� � � � .
 � is eventually suspected after the final control message from
 � arrived.

PROOF: From step
� � � � , strong completeness and plausibility of the failure detector (step

� � � �),
and the algorithm. �

2.1.3.3
� � � � . Q.E.D.

PROOF: From steps
� � � � and

� � � � the algorithm will trigger a detection event in line 16. �
2.1.4

� � � �
. CASE: � has the form � crashed � .

PROOF: Since the failure detector satisfied plausibility, application events are only processed
when
 � is supposed to be up. Since the algorithm has already constructed a global state in
which � holds (step

� � � �), the final control message to construct alpha arrives in a state where
� � � crashed � � � � � holds. Therefore, the algorithm triggers a detection event in line 6. �

2.1.5
� � � � . Q.E.D.

PROOF: Steps
� � � � and

� � � �
cover all cases. �

2.2
� � � � . The algorithm in Figure 6 satisfies the safety requirement ��� � of the predicate detection

problem.
PROOF SKETCH: We assume that � never holds and � is a point in time of an execution. We
must show that there is a time � � � � such that the algorithm does not indicate that � holds.
Basically, there are three cases to consider: (1) The algorithm has never issued a detection
event before � , (2) the most recent event issued by the algorithm was an undetection event, or
(3) the most recent event was a detection event. Cases (1) and (2) are trivial. In the third case,
obviously the algorithm has made a wrong failure detection which can only be due to an up
process being suspected to be down (this follows from the plausibility of the failure detector).
Since the failure detector is infinitely often accurate, it will eventually rehabilitate that process
at some future point in time � � leading to an undetection.

2.2.1
� � � � . ASSUME: � never holds in some execution and let � be a point in time of that execution.

PROVE: There is a point in time � � � � such that the algorithm indicates that � does
not hold.

2.2.1.1
� � � � . CASE: The algorithm has never issued any detection or undetection event.

PROOF: Take � � � � . �
2.2.1.2

� � � � . CASE: The most recent event has been an undetection event.
PROOF: Take � � � � . �

2.2.1.3
� � � � . CASE: The most recent event has been a detection event.

2.2.1.3.1
�
� � � . �$� � � crashed � and � both equal true at time � .

PROOF: From the algorithm. �
2.2.1.3.2

�
� � � . The detection event resulted from a wrong suspicion of some process
 � issued by

the failure detector in line 11.
PROOF: If the detection event was due to the rehabilitation of some process
 � in line
11 or due to the arrival of a control message in line 2, then � must have held in the
computation, a contradiction to the assumption of step

� � � � . �
2.2.1.3.3

�
� � � . There is a time � � �(� such that the failure detector rehabilitates
 � .

PROOF: From step
�
� � � and the assumption that � never holds, we know that
 � is a

correct process. The step follows from this and the infinitely often accuracy property of
the failure detector. �

2.2.1.3.4
�
� � �

. Q.E.D.
PROOF: Directly from step

�
� � � . �

2.2.1.4
� � � �

. Q.E.D.
PROOF: Steps

� � � � ,
� � � � and

� � � � cover all cases. �
2.2.2

� � � � . Q.E.D.
PROOF: Directly from step

� � � � . �
2.3

� � � � . Q.E.D.

18

PROOF: From steps
� � � � and

� � � � we have that the algorithm satisfies Sem � . �
3

� � � � . It is impossible to detect general predicates according to Sem � or Sem � in the given system
model.

3.1
� � � � . It is impossible according to Sem � .

3.1.1
� � � � . ASSUME: There exists an algorithm Alg which solves the predicate detection problem

according to Sem � in the given system model.
PROVE: false

3.1.1.1
� � � � . Consider the predicate � � crashed � . Then Alg satisfies eventual strong accuracy and

strong completeness for
 � .
PROOF: From the assumption and the definition of Sem � . �

3.1.1.2
� � � � . Consensus is solvable in the given system model.

PROOF: Use the algorithm in step
� � � � to build an eventually perfect failure detector in the

given system model and apply the algorithm of Chandra and Toueg [3]. �
3.1.1.3

� � � � . Q.E.D.
PROOF: Step

� � � � is a contradiction to the result of Fischer, Lynch and Paterson [9] (note
that this result also holds in the interrupt model). �

3.1.2
� � � � . Q.E.D.

PROOF: Follows indirectly from step
� � � � . �

3.2
� � � � . It is impossible according to Sem � .

PROOF: From step
� � � � and the fact that Sem � � Sem � . �

3.3
� � � � . Q.E.D.

PROOF: From steps
� � � � and

� � � � . �
4

� � � �
. Q.E.D.

PROOF: Step
� � � � shows claim (a), step

� � � � claim (b). �

4.3 Using an Eventually Perfect Failure Detector (
���

)

Defining stronger limitations on incorrect failure suspicions results in stronger predicate detection
semantics. As � and �	� are stronger than ���
� [11], Theorem 4 (a) holds also for these failure
detectors, i.e., Sem � can be achieved. Note that the failure detector must be made plausible before
being used in the algorithm of Figure 6.2

Corollary 1 In asynchronous systems with crash failures and any failure detector in �
� it is possi-
ble to satisfy detection semantics Sem � .

PROOF SKETCH: Follows from Theorem 4, the fact that �	� � ���	� .
ASSUME: A failure detector in �
� is available.
PROVE: There exists an algorithm that solves the predicate detection problem with Sem � .

1
� � � � . There exists an algorithm that solves the predicate detection problem using any failure detector

in ���	� with semantics Sem � in the given system model.
PROOF: From Theorem 4. �

2
� � � � . A failure detector in �	� satisfies the properties of ���	� .

PROOF: Obvious, since �
� imposes stronger requirements on the behavior of failure detectors
than ���
� . �

3
� � � � . Q.E.D.

PROOF: From steps
� � � � and

� � � � . �
2Also note that although making � plausible with the wrapper in Figure 7 weakens the failure detector to ��� ,

Theorem 4 (a) still holds.

19

However, although an eventually perfect failure detector is stronger, it still is not sufficient to
detect predicates perfectly. Actually, even a perfect failure detector cannot achieve perfect predicate
detection. The intuitive reason for this is depicted in Figure 9. Consider the case where a predicate
� is true iff
 � crashes after event � � , i.e., � � ec � ��� � crashed � . After suspecting
 � (see Figure 9
(b)) the monitor

� � must eventually raise an exception to the application that the predicate held.
However,

� � can never be sure that the predicate detection is accurate, because a message from
 �
may arrive later informing it about an event � � (see Figure 9 (a)). Since the message can be delayed
for an arbitrary amount of time,

� � cannot distinguish between both scenarios.

b
1

p
1

e
1
 e
2

predicate evaluates

to true

b
1

p
1

e
1

predicate evaluates

to true

(a)
 (b)

crash
 crash

Figure 9: Predicate � � ec � ��� � crashed � is not detectable according to detection semantics Sem �
with any failure detector in � .

Theorem 5 In asynchronous systems with crash failures and any failure detector not strictly stronger
than � it is impossible to satisfy detection semantics Sem � .

ASSUME: Perfect failure detectors are available.
PROVE: There exists no algorithm that solves the predicate detection problem with semantics

Sem � in the given system model.

1
� � � � . ASSUME: There exists an algorithm Alg which solves the predicate detection problem with

semantics Sem � using perfect failure detectors.
PROVE: false

1.1
� � � � . Consider an execution � � where an event ��� � � happens on a process
 at time � , where

crashes after � without executing another event, and where Alg is used to detect � ��� �
��� crashed� . (This is visualized in Figure 9 (b) where � � denotes the event ��� ��� .) Then
there is a point in time � � where Alg triggers a detection event.

PROOF: Obviously, � holds in the execution as soon as
 crashed. Since Alg satisfies Sem � , it
eventually triggers a detection event. The time � � at which this happens is the witness for the
claim. �

1.2
� � � � . Consider an execution � � which is the same as � � except that
 executes another event

��� � � after executing ��� ��� and before crashing. (See Figure 9 (a) where � � denotes the
additional event ��� �

�
.) Furthermore, the control message is delayed in such a way that it

is delivered to Alg after time � � . Then Alg never issues a detection event.
PROOF: Since � never holds in � � and Alg satisfies Sem � , it never detects � . �

1.3
� � � � . Alg issues a detection event in � � at time � � .

PROOF: Follows from step
� � � � and the fact that � � is indistinguishable from � � up to time � � in

an asynchronous system. �
1.4

� � � �
. Q.E.D.

PROOF: Step
� � � � is a contradiction to step

� � � � . �
2

� � � � . Q.E.D.
PROOF: Follows indirectly from step

� � � � . �

20

Corollary 2 In asynchronous systems with crash failures and any failure detector not strictly stronger
than �
� it is impossible to satisfy detection semantics Sem � .

PROOF SKETCH: Follows from Theorem 5 and the fact that � � �
� .

On the other hand, detecting Sem � with �	� is achievable. However, the proof again relies on
the fact that the given failure detector is plausible. Using a non-plausible failure detector may cause
a miss of the occurrence of certain predicates and thus violate the liveness property. Assume, for
instance, the predicate � � � � � � � � crashed � , with � initially 0. Furthermore, assume that the
failure detector � in �	� is not plausible and that it erroneously suspects process
 � . Although
 �

sends the control messages about an event that sets � to 1 and back to
�

again, the monitor does not
detect that � has held.

Theorem 6 In asynchronous systems with crash failures and any failure detector in �	� it is possible
to satisfy detection semantics Sem � .

PROOF SKETCH: The proof is similar to the proof of Theorem 4, i.e., we use the algorithm in Figure 6
and show that it satisfies requirements of Sem � . For simplicity, we only cover the case where the
predicate � which is to be detected has the form � � � ��� as described above.

1
� � � � . A plausible failure detector in �	� is available.

PROOF: Follows from Lemma 1. �
2

� � � � . The algorithm in Figure 6 satisfies
�

.
2.1

� � � � . ASSUME: � holds in the computation.
PROVE: The algorithm issues a detection event.

2.1.1
� � � � . Eventually all control messages relating to � arrive at the monitor and are delivered in

causal order.
PROOF: From the FIFO reliable channel assumption. �

2.1.2
� � � � . The monitor constructs a global state � where � holds.

PROOF: From step
� � � � and the algorithm. �

2.1.3
� � � � . CASE: � � � crashed �

PROOF: Since the failure detector is plausible (step
� � � �), the final control message of step

� � � �

will arrive while
 � is not suspected, so � holds in � and the algorithm issues a detection event
in line 6. �

2.1.4
� � � �

. CASE: � � crashed �

Similar to the argument in Theorem 4 after constructing � and since � holds in the computa-
tion, eventually the failure detector will suspect
 � because it satisfies plausibility and strong
completeness. So eventually the algorithm will issue a detection event in line 16. �

2.1.5
� � � � . Q.E.D.

PROOF: Steps
� � � � and

� � � �
cover all cases. �

2.2
� � � � . Q.E.D.

PROOF: From step
� � � � and the definition of

�
. �

3
� � � � . The algorithm in Figure 6 satisfies � � .

3.1
� � � � . There is a time � after which the failure detector makes no wrong detections.

PROOF: From the fact that it satisfies eventual strong accuracy. �
3.2

� � � � . There is a time � � � � after which the plausible version of the failure detector makes no
wrong detections and no control messages are received from the suspected process in the
future.

PROOF: From step
� � � � and step

� � � � . �
3.3

� � � � . ASSUME: The algorithm issues a detection event after � � .
PROVE: � held in the computation.

21

3.3.1
� � � � . Control messages concerning � have been received.

PROOF: From assumption that a detection event is issued and the algorithm. �
3.3.2

� � � � . Control messages concerning � have been sent.
PROOF: From step

� � � � and the reliable channel assumption. �
3.3.3

� � � � . � held at some point in the computation.
PROOF: From step

� � � � and the FIFO ordering of control messages. �
3.3.4

� � � �
. CASE: � � � crashed �

PROOF: From step
� � � � , the case assumption, and the plausibility of the failure detector

(step
� � � �) � held in the computation. �

3.3.5
� � � � . CASE: � � crashed �

PROOF: The plausibility requirement implies that the detection event can only have been
issued in line 16. This means that the failure detector suspected
 � in line 11. Since this
happens after time � � , step

� � � � implies that this suspicion is accurate and that all control
messages have been received. Hence, � held in the computation. �

3.3.6
� � � �

. Q.E.D.
PROOF: Steps

� � � �
and

� � � � cover all cases. �
3.4

� � � �
. Q.E.D.

PROOF: From step
� � � � and the definition of � � . �

4
� � � �

. Q.E.D.
PROOF: From steps

� � � � and
� � � � and the definition of Sem � . �

4.4 Using a Perfect Failure Detector (
�

)

Even a perfect failure detector is not sufficient to perfectly detect all possible predicates. Indeed,
from the point of view of predicate detection for general predicates the strongest possible detection
semantics are the same as for �
� . This has already been shown in Theorem 5, i.e., it is impossible
to detect with Sem � using any failure detector in � . However, since Sem � is achievable using �	� , it
is also achievable with � .

Corollary 3 In asynchronous systems with crash failures and a perfect failure detector it is possible
to satisfy detection semantics Sem � .
PROOF SKETCH: The proof follows from Theorem 6 and the fact that � � �	� .

Interestingly, we can detect predicates of the form ����� according to Sem � using � if � is stable.
The stability of � ensures that the predicate still holds, although control messages may still arrive
from events that occurred immediately before the crash of the process (see Figure 9).

4.5 Introducing Failure Detector Class
��

A perfect failure detector is not sufficient to achieve optimal detection semantics in asynchronous
systems. Intuitively, this is because � offers no information about the relative ordering of the crashes
with respect to other application events. Consequently, we require a plausible failure detector that is
still in � . However, we show that this plausible failure detector is actually stronger than any failure
detector in � .

Definition 3 (ordered perfect failure detector) An ordered perfect failure detector is a perfect fail-
ure detector which satisfies the following additional order property: Together with every “suspicion
of
 � ” event, the failure detector issues the event number of the last event that happened on
 � .

We denote the class of all ordered perfect failure detectors by
�
� .

22

Theorem 7
�
� � � .

PROOF SKETCH: The fact that
�
� is at least as strong as � is obvious. The proof that � is not at

least as strong as
�
� reuses the idea of Theorem 5 since

�
� allows to distinguish the two situations

which were indistinguishable if only � is available. Since we use a later theorem (Theorem 8) in
this proof, we postpone the proof until later.

�
�� ��� �

�
�

�
� �� �

� ��

�
�
��� ��� � �

�
�

Figure 10: The ordering relations between
�
� and other failure detector classes.

Figure 10 shows how
�
� relates to other failure detector classes with respect to � . An ordered per-

fect failure detector allows to order crashes and normal process events causally, i.e., if a suspicion is
issued by the failure detector and the associated sequence number is � , then delivery of the suspicion
event can be held back until all control messages which have sequence numbers below or equal to
� have been delivered. Hence, plausibility for an ordered perfect failure detector is achieved, which
in turn means that the detection algorithm from Figure 6 allows to detect predicates with detection
semantics Sem � .

Theorem 8 In asynchronous systems with crash failures and an ordered perfect failure detector it
is possible to detect general predicates with detection semantics Sem � .

PROOF SKETCH: We use the standard algorithm in Figure 6 and show that it satisfies the properties
of Sem � . Again, we restrict ourselves to the case where � � ��� � .

1
� � � � . The algorithm satisfies

�
.

PROOF: The proof is the same as in Theorem 6. �
2

� � � � . The algorithm satisfies � .
PROOF: The proof is the same as in Theorem 6 except that the time � � is the beginning of the
computation. �

3
� � � � . Q.E.D.

PROOF: From steps
� � � � and

� � � � and the definition of Sem � . �
We now give the proof of Theorem 7. Note that in the previous theorem we do not refer to

Theorem 7, i.e., we have no circular dependencies.
ASSUME: There is an algorithm Alg which can be used to transform any failure detector in � into a

failure detector in
�
� .

PROVE: false

1
� � � � . Consider a wrapper around the failure detector emulated with Alg which suspects a process

only after the final control message has been received. This wrapper is implementable in
asynchronous systems.

PROOF: Obvious since it is similar to enforcing FIFO ordering on control messages. �
2

� � � � . Sem � can be achieved using a perfect failure detector.
PROOF: From step

� � � � and Theorem 8. �
3

� � � � . Q.E.D.
PROOF: Step

� � � � is a contradiction to Theorem 5. �

23

asynchronous
payload network

synchronous
control network

failure
detector
interface

process 1
process 2

Figure 11: Implementing
�
� using a low-bandwidth realtime network.

4.6 Implementing
��

Overall, perfect detection of general predicates in asynchronous systems is achievable only if we
postulate a failure detector that is strictly stronger than a perfect failure detector. This is somewhat
disappointing since even perfect failure detectors are very hard to implement in practice. However,
ordered perfect failure detectors can still be implemented using a timely computing base [19]. In
such an approach, an asynchronous network is enhanced by a synchronous real-time control net-
work (see Figure 11). The asynchronous network is assumed to be high-bandwidth and is used for
regular “payload” traffic while the synchronous network is only used for small control messages and
therefore can be low-bandwidth. Under these assumptions it is possible to build a failure detection
service that satisfies the order requirement of

�
� by synchronously passing information about sent

messages over the control network. Unfortunately, the execution of the event, and the sending on the
synchronous and asynchronous network together have to be executed as an atomic action, which is a
rather strong assumption. However, with this approach, a remote process accurately detects process
crashes and is aware of the number of control messages sent prior to the crash.

5 Generalization to � Processes and � Monitors

In the previous sections we considered predicates local to one process in conjunction with a predicate
on the operational state of this process, i.e., ����� . This section generalizes our results to scenarios
with multiple processes (i.e., � - �) and to multiple monitors (i.e., � - �). The algorithms pre-
sented in Figures 6 and 7 are thus executed on every monitor. In the context of � processes and �
monitors, the predicates are of the form � � � � � � � op � � � � � � � op � � � , where op denotes either � or�

.
In a system with � processes and � monitors, a causal broadcast mechanism is used so that the

control messages are received by the monitors in causal order [16].

5.1 Observer Independence

Generalizing predicate detection to systems with multiple processes and multiple monitors gives rise
to the issue of observer independence. Depending on the predicate � and the setting in which it is
evaluated, the validity of certain predicates depends on the observer [16]. Observer independence is
achieved if all possible observations of the system result in the same truth value for � [5]. Assume,
for instance, that process
 � executes an assignment ��� � � � � (i.e., event �

�� in Figure 12) and
 �
an assignment � � � � � � (i.e., event �

� �) on variables � and � which are initially 1. While monitor� � detects the predicate � � � � � � � � �
,
� � does not; the predicate � is thus not observer

independent, although the corresponding local predicates (i.e., ��� � and � �
�
) are. Charron-

24

Bost et al. [5] have shown that observer independence is maintained for the disjunction of observer
independent predicates, whereas it generally is not for the conjunction.

b
1

b
2

p
1

p
2

e
1

1

e
1

2

x=1

y=1

x=1,y=2
 x=2,y=2

x=2,y=1
 x=2,y=2

Figure 12: Example of an observer dependent predicate, where �
�� specifies the event � � � � � � and

�
� � the event � � � � � � .

In general, two approaches are possible to address the problem of observer independence: (a)
limiting the set of observed predicates or (b) defining a different notion of what it means for � to
hold. We will focus on the former approach here. The latter approach has been studied by Gärtner
and Kloppenburg [12].

5.2 Limiting the Set of Observed Predicates

The global predicates we are considering consist of the conjunction and disjunction of local pred-
icates ��� and predicates about the operational state of processes � � . Unreliable failure detection
introduces a new source of observer dependence; observer independence for a global predicate gen-
erally depends on the failure detector. Obviously, � � is detectable in an observer independent way if
a perfect failure detector is available. However, predicates of type � � ��� � need an ordered perfect
failure detector to be detectable in an observer independent way. A failure detector of class � is suf-
ficient, if ��� is stable. On the other hand, a failure detector in �
� only achieves “eventual” observer
independence, whereas with ���
� , observer independence may never be achieved.

Limiting the set of observed predicates to observer independent predicates considerably reduces
the number of global predicates that can be detected. However, following Charron-Bost et al. [5]
and the above findings, we can construct new observer independent global predicates from smaller
building blocks. For example, disjunctions of stable local predicates in conjunction with predicates
on the operational state of processes, i.e., � � � � � � � � � � � � � � � , remain observer independent if
a failure detector in � is available. On the other hand, conjunctions of observer independent local
predicates and predicates about the operational state of processes, i.e., � � � �
� � � � � � � �
� � � , generally
are not observer independent.

6 Conclusion and Future Work

This paper investigates the predicate detection semantics that are achievable for general predicates
using either failure detector classes ���
� � �
� , or � . A general predicate thereby is of the form
����� , where � is a local predicate and � denotes a predicate on the operational state of a process,
i.e., specifies whether a process has crashed or not. We define three different predicate detection
semantics: perfect (i.e., � � � �), stabilizing (� � � �), and infinitely often accurate (� � � �). Our re-
sults show that failure detector class ���
� allows to detect general predicates according to � � � � ,
whereas �	� enables � � � � . Somewhat surprisingly, a perfect failure detector is not sufficient to de-
tect general predicates according to � � � � . This leads to the definition of a stronger failure detector,
called ordered perfect and denoted

�
� . With

�
� , perfect predicate detection (i.e., � � � �) is achievable.

An overview of our results is shown in Table 1.

25

Failures Predicates Failure Detector Class Achievable Semantics Reference

none � none Sem � [7]
crash � none Sem � [7]
crash � � Sem � [3]
crash � �
� Sem � [3]
crash � ���	� Sem � [10]
crash � � � � Sem � Sect. 3.2
crash ��� � ���	� Sem � Thm 4
crash ��� � �
� Sem � Thm 6
crash ��� � � Sem � Cor. 3
crash � ��� , � stable � Sem � Sect. 4.4
crash ��� � �

� Sem � Thm 8

Table 1: Strongest achievable predicate detection semantics with respect to types of predicates and
the failure detector class available. Again, � denotes a predicate which refers only to normal process
variables and � is a predicate referring only to the operational state of the process.

In the future, we plan to further investigate issues of observer independence in systems with �
processes and � monitors and consider predicate detection under more severe fault assumptions,
e.g., crash-recovery.

Acknowledgments: We wish to thank Sven Kloppenburg and Klaus Kursawe for their comments
on an earlier version of this paper. We also thank the anonymous reviewers of DISC 2001 for
suggesting to study the differences between the query model and the interrupt model of failure
detectors.

References

[1] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters, 21:181–185,
1985.

[2] Joffroy Beauquier and Synnöve Kekkonen-Moneta. Fault-tolerance and self-stabilization: impossibility
results and solutions using self-stabilizing failure detectors. International Journal of System Science,
28(11):1177–1187, 1997.

[3] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, March 1996.

[4] K. M. Chandy and Leslie Lamport. Distributed snapshots: determining global states of distributed
systems. ACM Transations on Computing Systems, 3(1):63–75, 1985.

[5] Bernadette Charron-Bost, Carole Delporte-Gallet, and Hugues Fauconnier. Local and temporal predi-
cates in distributed systems. ACM Transactions on Programming Languages and Systems, 17(1):157–
179, January 1995.

[6] Bernadette Charron-Bost, Rachid Guerraoui, and André Schiper. Synchronous system and perfect failure
detector: Solvability and efficiency issues. In International Conference on Dependable Systems and
Networks (IEEE Computer Society), 2000.

[7] Craig M. Chase and Vijay K. Garg. Detection of global predicates: Techniques and their limitations.
Distributed Computing, 11(4):191–201, 1998.

26

[8] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[9] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[10] Vijay K. Garg and J. Roger Mitchell. Distributed predicate detection in a faulty environment. In Pro-
ceedings of the 18th IEEE International Conference on Distributed Computing Systems (ICDCS98),
1998.

[11] Vijay K. Garg and J. Roger Mitchell. Implementable failure detectors in asynchronous systems. In Proc.
18th Conference on Foundations of Software Technology and Theoretical Computer Science, number
1530 in Lecture Notes in Computer Science, Chennai, India, December 1998. Springer-Verlag.

[12] Felix C. Gärtner and Sven Kloppenburg. Consistent detection of global predicates under a weak fault
assumption. In Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS2000),
pages 94–103, Nürnberg, Germany, October 2000. IEEE Computer Society Press.

[13] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on Software
Engineering, 3(2):125–143, March 1977.

[14] Leslie Lamport. How to write a proof. American Mathematical Monthly, 102(7):600–608, August/
September 1995.

[15] H. Matsui, M. Inoue, T. Masuzawa, and H. Fujiwara. Fault-tolerant and self-stabilizing protocols using
an unreliable failure detector. IEICE Transactions, E83-D(10):1831–1840, October 2000.

[16] Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed computations:
in search of the holy grail. Distributed Computing, 7:149–174, 1994.

[17] Amitabh Shah and Sam Toueg. Distributed snapshots in spite of failures. Technical Report TR84-624,
Cornell University, Computer Science Department, July 1984.

[18] Subbarayan Venkatesan. Reliable protocols for distributed termination detection. IEEE Transactions on
Reliability, 38(1):103–110, April 1989.

[19] Paulo Verı́ssimo, Antonio Casimiro, and Christof Fetzer. The timely computing base: Timely actions
in the presence of uncertain timeliness. In Proceedings of the International Conference on Dependable
Systems and Networks, pages 533–542, New York City, USA, June 2000. IEEE Computer Society Press.

[20] Pei yu Li and Bruce McMillin. Fault-tolerant distributed deadlock detection/resolution. In Proceed-
ings of the 17th Annual International Computer Software and Applications Conference (COMPSAC’93),
pages 224–230, November 1993.

27

