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Critical Infrastructures
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Complex Computer Systems

Today’s computer systems frequently consist of many

interacting processes. Here complexity arises due to

concurrency, real-time behavior, and heterogeneity.

MPII Research Programme

• . . . and due to hardware/software faults and malicious

attackers.

• Mathematical modeling and analysis is vital.

• Need to find suitable abstractions.
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Distributed Algorithms

• Geographically separated, concurrent processes

cooperate to reach a common goal.

• Problems:

– Lack of common time frame.

– Lack of common view.

– Inherent non-determinism.

• Examples: Network protocols (TCP/IP), routing,

spanning-tree construction, . . .
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Directions is Distributed Algorithms

(Correct) Distributed Algorithms

↓

Fault-tolerant Distributed Algorithms

↓

Secure Fault-tolerant Distributed Algorithms
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Asynchronous System Model

• Distributed network nodes communicate via message

passing.

• Messages can take arbitrarily long.

• Nodes can be arbitrarily slow.

• Common system model for the Internet.

• No faults!



7/22

Properties of Distributed Algorithms

• System: state machine/event system with interface.

• Specification: functional properties defined on

individual executions of the system.

• Safety properties: “always . . . ”.

• Liveness properties: “eventually . . . ”.

• Safety and liveness are fundamental.
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Example: Mutual Exclusion

• Research group with one printer.

• Safety:

– It is never the case that any two users access the

printer at the same time.

• Liveness:

– If a user wants to print something she will eventually

succeed.

• How specify fairness?
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Correct Distributed Algorithms

• Prove safety using invariant arguments.

• Prove liveness using well-foundedness arguments.

• A large collection of verified algorithms for standard

problems exists:

– Mutual exclusion, leader election, spanning-tree

construction, . . .

• We know many intricacies of system models (e.g., use

of randomization in anonymous networks).
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What about Faults?

• Faults can be:

– memory perturbation (cosmic rays),

– link failure (construction works),

– node crash (power outage), . . .

• Faults can be modeled as unexpected events.

• Adding and “removing” state transitions is enough.

• Formalized as a fault assumption.
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Fault Tolerance Example

• Fault assumption: links and nodes can crash, but

network stays connnected.

• We want to do reliable broadcast:

– A message which is delivered was previously

broadcast (safety).

– A broadcast message is eventually delivered on all

surviving machines (liveness).

• Handling get’s easier if we relate fault-free environment

to faulty environment.
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Fault-tolerant Distributed Algorithms
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specification
transformation

correctness fault-tolerance
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Theory of Fault-tolerant Systems

• Fault-tolerant program =

fault-intolerant programm + fault-tolerance

components.

• Detector: detects system state.

• Corrector: corrects to a system state.

• Abstraction of many known mechanisms.
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Formal Foundations of Fault-tolerance

• Theorems:

– Detectors are necessary and sufficient to maintain

safety.

– Correctors are necessary and sufficient to achieve

liveness.

• Correctors contain detectors.

• Principle of operation: redundancy.
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Theory of Redundancy

• Redundancy in space = non-reachable states in the

absence of faults.

• Redundancy in time = never-executed transitions in

the absence of faults.

fault-tolerant w.r.t. necessary

Safety Redundancy in space

Liveness Redundancy in time +

redundancy in space
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What about Security?

• Many different aspects to consider: trust, secrecy, . . .

• Conjecture: Security is CIA.

– Confidentiality: non-occurrence of unauthorized

disclosure of information.

– Integrity: non-occurrence of inadequate information

alterations.

– Availability: readiness for usage.
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Security Properties

• We can model a lot of notions from security with

safety and liveness:

– Access control is safety.

– Aspects of confidentiality are safety. .

– Aspects of integrity are safety,

e.g. “no unauthorized change of a variable”.

– Aspects of availability are liveness,

e.g. “eventual reply to a request”.
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Problems with Information Flow

manager input

clerk input

manager output

clerk output
y

x

x, ypossibleexecutions:

z

z, y
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Higher Level Properties

• Property of the type: if trace x, y is possible, then

trace z, y must be possible too.

• Usually formalized as closure conditions on trace sets:

σ ∈ S ⇒ f(σ) ⊆ S

• Properties of properties, sets of sets of traces.

• Consequence: Restriction of information flow is neither

safety nor liveness.
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Open Questions

• Are higher level properties enough?

• Relations to cryptographic definitions of security?

• Are attacker assumptions reasonable (Dolev-Yao)?

What about “unknown” attacks?

• Promising direction: Develop a theory of security

components to understand security protocols.
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The World According to F.G.

distributed
algorithms

fault-tolerance
components
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safety

liveness

higher level
proper ties
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Research Agenda

• We need

– set of well-understood system models,

– set of reasonable fault/attacker assumptions,

– sound design theories,

– algorithmical building blocks

to understand and build critical systems.
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Gärtner, F. C. 1998. Specifications for fault tolerance: A comedy of
failures. Technical Report TUD-BS-1998-03 (Oct.), Darmstadt University
of Technology, Darmstadt, Germany.
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Abstract

The failure of a critical computer system can have unpleasant consequences like severe irritation, industrial damage,
even loss of human lives. Failures can arise due to hardware and software faults, but also as the result of malicious
actions initiated by an attacker of the system. While the former should be dealt with using fault-tolerance
mechanisms, the latter should be addressed using approaches from computer security.

In the past, the existing fault tolerance and security problems in practice have often been dealt with using ad hoc
methods developed by practitioners in response to urgent development needs. However, many of the questions
regarding the underlying priniciples of fault-tolerant and secure operations have not been sufficiently answered yet.
What is needed is a theoretically sound methodological foundation for the design of fault-tolerant and secure systems.

In this talk, I will discuss the main aspects of such a foundation which cover questions of system models, fault and
attacker assumptions, design theories of fault-tolerant and secure algorithms, and algorithmical building blocks for
paradigmatic problems. I will sketch the state of the art as well as directions for future work in these areas.


