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Summary

• Revisit the area of “ftss” (fault-tolerant and self-stabilizing systems).

Executive summary:

Positive and negative results
about mixing self-stabilization with silent crash failures

• Outline:

– Recall major setting and system model (ring of processes).
– Recall previous work.
– Some positive and negative conditions for ftss solvability:
∗ General conditions in the spirit of failure sensitivity [Anagnostou and

Hadzilacos 1993].
∗ Characterization in terms of failure detectors [Chandra and Toueg 1996].
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General System Model

• n asynchronous processes, at most t < n can crash.

• Crash = process stops making steps.

• Communication only by link registers [Dolev et al. 1993] (not message passing!).

• Initial state of registers arbitrary.

• Initial processor states arbitrary.

• Processes

– can be uniform/non-uniform.
– can be anonymous/have unique identifierss.
– can have (no) common sense of direction.
– may have access to failure detectors.



4/18

Failure Detectors [Chandra and Toueg 1996]

• Devices that can be queries and tell the operational state (up/down) of a remote
process.
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• Crash faults are undetectable in asynchronous systems: Failure detectors can be
viewed as synchrony abstractions.

• Example: Class of perfect failure detectors P satisfies:

– Process p is not suspected before it crashes.
– If p crashes, it will eventually be suspected.

• Weaker notions possible (e.g., 3P).
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Specific System Model [Anagnostou and Hadzilacos 1993]

• Asynchronous ring of processes, t = 1.

???

• Processes should determine the size of the ring.

• Theorem by Anagnostou and Hadzilacos [1993]: There is no ftss protocol for
ring size.



6/18

Impossibility of ftss Ring Size Counting
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• Proof idea: algorithm cannot distinguish between Ra and Rb (cannot even “lock”
into Rb because of possibly corrupt inputs).
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Other (Im)Possibilities on Rings

• Ring counting is impossible even if randomization is added, the ring is oriented,
and processors have unique identifiers.

• It becomes solvable if 3P is added to the system [Beauquier and Kekkonen-
Moneta 1997a].

• Also impossible:

– deterministically assigning unique identifiers [Anagnostou and Hadzilacos
1993].

– deterministic orientation [Beauquier et al. 1996].

• Both problems are solvable if randomization is added [Anagnostou and Hadzilacos
1993; Beauquier et al. 1996].

• Other related work omitted for brevity (additional slides on request).
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Failure Sensitivity

• Generalized condition: failure sensitivity [Anagnostou and Hadzilacos 1993].

• A problem is failure sensitive if

– for any state C which is legitimate if all are up there exists a process u and a
state C ′ such that
∗ C ′ is indistinguishable from C for all processes apart from u, and
∗ C ′ is illegitimate if u has crashed, and
∗ for all states C ′′ reached from C ′ (which are legitimate if u has crashed)

are illegitimate if u has not crashed.

• Theorem: A failure sensitive problem has no ftss solution.

• Intuition: Problem depends on the operational state of processes.

– Example: leader election
∗ If the leader has crashed, the system must eventually elect a new leader;

danger of having two leaders.
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Conditions for Solvability

• Failure sensitivity is a negative criterion (if a problem is failure sensitive, it is
impossible).

• Failure sensitivity is also a condition very close to the impossibility proof.

• Two ways to study solvability:

– strengthen the model (by adding failure detectors).
– find structural conditions associated with problem specifications that enable

ftss solutions.

• We present two structural conditions . . .
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Condition 1

• Assume: Solution is a function on the initial system state (a fixed point, not a
non-terminating behavior).

• Condition 1:

– any local state of a process could be part of a legitimate global state, and
– for any process p, if the local states of p’s neighbors could be part of a

legitimate global state, then the local state of p can be changed (locally) to
be legitimate without having to change the local state of its neighbors.

• Lemma: If a problem satisfies Condition 1 then there exists a randomized ftss
protocol to solve it.

• Example: 3-coloring the ring is ftss-solvable.

• Proof assumes unique totally ordered identifiers (this is where randomization
is necessary). Use identifiers to break symmetry in the questions “who follows
who”.
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Condition 2

• Assume: (1) Problem is a function on the initial system state, and (2) there is a
total order between all solutions.

• Condition 2: If a state is legitimate for a given ring, then any ring segment also
has a legitimate state.

• Example: Finding upper bound on ring size is ftss solvable.

• Proof assumes unique and totally ordered identifiers (randomization needed here
again):

– Everybody takes periodic snapshots.
– Eventually, snapshot image at every process will converge, and solution

function will be calculated in the same manner at all processes.
– A crashed processes may “make the ring look larger”, but any solution for the

larger ring is also a solution for any ring segment.

• Now turn to failure detectors.



12/18

Comparing Failure Detectors

D1 D2
A

• Set D of all failure detectors, take D1, D2 ∈ D.

• D1 weaker than D2 (D1 ≤ D2) if there exists an algorithm A which transforms
output of D1 into output of D2.

• Failure detector D is weakest to solve a problem P :

1. D allows to solve P
2. Every failure detector D′ which allows to solve P is at least as strong as D

(D′ ≥ D).
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Failure Detectors for Ring Counting

• 3P allows to solve ring counting, but can we find weaker failure detectors that
also do the job?

• This is pretty hard. Two first attempts:

– boundedly inaccurate failure detector:
∗ a crashed process is eventually permanently suspected by both neighbours
∗ there exists a constant k such that for a non-crashed process, eventually, in

any sequence of k queries there is at least one correct response.
– the anonymous failure detector:
∗ tells whether or not at least one neighbor has crashed.

• Are they really weaker?

• No, both can be transformed into 3P.
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A Note on Weakest Failure Detectors
• Failure detectors have a formal definition [Chandra and Toueg 1996]: class of

programs defined as a function of failures (and nothing else).

– Example: “respond 42 to every query” is a failure detector.
– Rephrase question about sufficient failure detector: Find a program in the set

of all failure detectors D that allows to solve the problem.

set of all problem specifications

set of all
failuredetectors

Dconsensus

ringcount

• Ring counting itself is the weakest failure detector.

• Want to find a problem equivalent to ring counting which “looks” like a failure
detector.
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A Strange Failure Detector

• Bounded suspicion failure detector (obviously weaker than 3P):

– if a process has crashed both neighbors will eventually permanently suspect
that process.

– eventually there will be at most one suspected process in the system (and this
process does not change “too often”).
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Sufficient to Solve Ring Counting

• Failure detector “narrows down” uncertainty about size of the ring (allows to
distinguish cases of impossibility proof).

• Can use the ring size counting protocol of Beauquier and Kekkonen-Moneta
[1997a] without modification.
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Necessary to Solve Ring Counting

• From knowledge of the ring size, build the bounded suspicion failure detector.
(Hard part is accuracy.)

– Keep on sending explorer messages with time-to-live n − 2. Upon receipt,
increase counter.

– Detect a certain pattern on all the counters of the ring.
– Lock in to a suspicion for increasingly longer periods of time.
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Summary

• Explore positive results about mixing self-stabilization with silent crash failures.

• Given two new structural conditions for solvability of problems on a ring.

• Investigated the weakest failure detector for determining the ring size.

– Formalizing the failure detector is not easy.
– Locking into a process with increasingly longer periods of time needs synchro-

nization between failure detector and upper layer protocol.

• Some possible future work questions:

– Is there anything special about failure detectors for ftss in contrast to
“normal” failure detectors?

– Do there exist problems for which no “traditional” failure detector (with
up/down interface) exists?
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Additional Emergency Slides
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Previous Work in More Detail
• Usually Gopal and Perry [1993], Anagnostou and Hadzilacos [1993] and Arora

and Gouda [1993] are referenced as starting points for explicit consideration of
crash failures in the context of self-stabilization.

• Note that detectable permanent faults can be treated as transient faults in the
self-stabilization methodology.

• We will start off from Anagnostou and Hadzilacos [1993]; four lines of follow-up
work:

– Masuzawa [1995]: ftss for the topology problem.
– Beauquier, Debas, and Kekkonen [1996, Beauquier and Kekkonen-Moneta

[1997b, Beauquier and Kekkonen-Moneta [1997a, Beauquier and Kekkonen
[1996]: solving ftss with failure detectors.

– Matsui, Inoue, Masuzawa, and Fujiwara [2000]: ftss using unreliable failure
detector.

– Nesterenko and Arora [2002]: stabilizing dining philosophers with optimal
crash failure.
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Previous Work (cont.)

• Results from Anagnostou and Hadzilacos [1993]:

– ftss impossible for counting ring size.
– definition of “failure sensitive”
– ftss possible for establishing unique IDs

• Results from Masuzawa [1995]

– ftss topology problem solvable when neighbor IDs are known (k crashes in
(k + 1)-connected networks)

– ftss not solvable using only connectivity or only neighbor IDs

• Results from Beauquier and Kekkonen-Moneta [1997a]

– ftss impossible for round synchronization
– (k + 1)-ftss counting impossible for k-centered ring
– �P solves ftss


