
1/18

On Crash Failures and Self-Stabilization
(in Rings)

Felix Gärtner

(joint work with Ted Herman)

In memory of Synnöve Kekkonen-Moneta

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

École Polytechnique Fédérale de Lausanne (EPFL)

I& C, LPD, CH-1015 Lausanne, Switzerland

fgaertner@lpdmail.epfl.ch



2/18

Summary

• Revisit the area of “ftss” (fault-tolerant and self-stabilizing systems).

Executive summary:

Positive and negative results
about mixing self-stabilization with silent crash failures

• Outline:

– Recall major setting and system model (ring of processes).
– Recall previous work.
– Some positive and negative conditions for ftss solvability:
∗ General conditions in the spirit of failure sensitivity [Anagnostou and

Hadzilacos 1993].
∗ Characterization in terms of failure detectors [Chandra and Toueg 1996].



3/18

General System Model

• n asynchronous processes, at most t < n can crash.

• Crash = process stops making steps.

• Communication only by link registers [Dolev et al. 1993] (not message passing!).

• Initial state of registers arbitrary.

• Initial processor states arbitrary.

• Processes

– can be uniform/non-uniform.
– can be anonymous/have unique identifierss.
– can have (no) common sense of direction.
– may have access to failure detectors.



4/18

Failure Detectors [Chandra and Toueg 1996]

• Devices that can be queries and tell the operational state (up/down) of a remote
process.

p

m

m suspectsp

• Crash faults are undetectable in asynchronous systems: Failure detectors can be
viewed as synchrony abstractions.

• Example: Class of perfect failure detectors P satisfies:

– Process p is not suspected before it crashes.
– If p crashes, it will eventually be suspected.

• Weaker notions possible (e.g., 3P).



5/18

Specific System Model [Anagnostou and Hadzilacos 1993]

• Asynchronous ring of processes, t = 1.

???

• Processes should determine the size of the ring.

• Theorem by Anagnostou and Hadzilacos [1993]: There is no ftss protocol for
ring size.



6/18

Impossibility of ftss Ring Size Counting

x

y

v

u

y

w
Ra Rb

x

• Proof idea: algorithm cannot distinguish between Ra and Rb (cannot even “lock”
into Rb because of possibly corrupt inputs).



7/18

Other (Im)Possibilities on Rings

• Ring counting is impossible even if randomization is added, the ring is oriented,
and processors have unique identifiers.

• It becomes solvable if 3P is added to the system [Beauquier and Kekkonen-
Moneta 1997a].

• Also impossible:

– deterministically assigning unique identifiers [Anagnostou and Hadzilacos
1993].

– deterministic orientation [Beauquier et al. 1996].

• Both problems are solvable if randomization is added [Anagnostou and Hadzilacos
1993; Beauquier et al. 1996].

• Other related work omitted for brevity (additional slides on request).



8/18

Failure Sensitivity

• Generalized condition: failure sensitivity [Anagnostou and Hadzilacos 1993].

• A problem is failure sensitive if

– for any state C which is legitimate if all are up there exists a process u and a
state C ′ such that
∗ C ′ is indistinguishable from C for all processes apart from u, and
∗ C ′ is illegitimate if u has crashed, and
∗ for all states C ′′ reached from C ′ (which are legitimate if u has crashed)

are illegitimate if u has not crashed.

• Theorem: A failure sensitive problem has no ftss solution.

• Intuition: Problem depends on the operational state of processes.

– Example: leader election
∗ If the leader has crashed, the system must eventually elect a new leader;

danger of having two leaders.



9/18

Conditions for Solvability

• Failure sensitivity is a negative criterion (if a problem is failure sensitive, it is
impossible).

• Failure sensitivity is also a condition very close to the impossibility proof.

• Two ways to study solvability:

– strengthen the model (by adding failure detectors).
– find structural conditions associated with problem specifications that enable

ftss solutions.

• We present two structural conditions . . .



10/18

Condition 1

• Assume: Solution is a function on the initial system state (a fixed point, not a
non-terminating behavior).

• Condition 1:

– any local state of a process could be part of a legitimate global state, and
– for any process p, if the local states of p’s neighbors could be part of a

legitimate global state, then the local state of p can be changed (locally) to
be legitimate without having to change the local state of its neighbors.

• Lemma: If a problem satisfies Condition 1 then there exists a randomized ftss
protocol to solve it.

• Example: 3-coloring the ring is ftss-solvable.

• Proof assumes unique totally ordered identifiers (this is where randomization
is necessary). Use identifiers to break symmetry in the questions “who follows
who”.



11/18

Condition 2

• Assume: (1) Problem is a function on the initial system state, and (2) there is a
total order between all solutions.

• Condition 2: If a state is legitimate for a given ring, then any ring segment also
has a legitimate state.

• Example: Finding upper bound on ring size is ftss solvable.

• Proof assumes unique and totally ordered identifiers (randomization needed here
again):

– Everybody takes periodic snapshots.
– Eventually, snapshot image at every process will converge, and solution

function will be calculated in the same manner at all processes.
– A crashed processes may “make the ring look larger”, but any solution for the

larger ring is also a solution for any ring segment.

• Now turn to failure detectors.



12/18

Comparing Failure Detectors

D1 D2
A

• Set D of all failure detectors, take D1, D2 ∈ D.

• D1 weaker than D2 (D1 ≤ D2) if there exists an algorithm A which transforms
output of D1 into output of D2.

• Failure detector D is weakest to solve a problem P :

1. D allows to solve P
2. Every failure detector D′ which allows to solve P is at least as strong as D

(D′ ≥ D).



13/18

Failure Detectors for Ring Counting

• 3P allows to solve ring counting, but can we find weaker failure detectors that
also do the job?

• This is pretty hard. Two first attempts:

– boundedly inaccurate failure detector:
∗ a crashed process is eventually permanently suspected by both neighbours
∗ there exists a constant k such that for a non-crashed process, eventually, in

any sequence of k queries there is at least one correct response.
– the anonymous failure detector:
∗ tells whether or not at least one neighbor has crashed.

• Are they really weaker?

• No, both can be transformed into 3P.



14/18

A Note on Weakest Failure Detectors
• Failure detectors have a formal definition [Chandra and Toueg 1996]: class of

programs defined as a function of failures (and nothing else).

– Example: “respond 42 to every query” is a failure detector.
– Rephrase question about sufficient failure detector: Find a program in the set

of all failure detectors D that allows to solve the problem.

set of all problem specifications

set of all
failuredetectors

Dconsensus

ringcount

• Ring counting itself is the weakest failure detector.

• Want to find a problem equivalent to ring counting which “looks” like a failure
detector.



15/18

A Strange Failure Detector

• Bounded suspicion failure detector (obviously weaker than 3P):

– if a process has crashed both neighbors will eventually permanently suspect
that process.

– eventually there will be at most one suspected process in the system (and this
process does not change “too often”).



16/18

Sufficient to Solve Ring Counting

• Failure detector “narrows down” uncertainty about size of the ring (allows to
distinguish cases of impossibility proof).

• Can use the ring size counting protocol of Beauquier and Kekkonen-Moneta
[1997a] without modification.



17/18

Necessary to Solve Ring Counting

• From knowledge of the ring size, build the bounded suspicion failure detector.
(Hard part is accuracy.)

– Keep on sending explorer messages with time-to-live n − 2. Upon receipt,
increase counter.

– Detect a certain pattern on all the counters of the ring.
– Lock in to a suspicion for increasingly longer periods of time.



18/18

Summary

• Explore positive results about mixing self-stabilization with silent crash failures.

• Given two new structural conditions for solvability of problems on a ring.

• Investigated the weakest failure detector for determining the ring size.

– Formalizing the failure detector is not easy.
– Locking into a process with increasingly longer periods of time needs synchro-

nization between failure detector and upper layer protocol.

• Some possible future work questions:

– Is there anything special about failure detectors for ftss in contrast to
“normal” failure detectors?

– Do there exist problems for which no “traditional” failure detector (with
up/down interface) exists?



19/18

Acknowledgments

• Slides produced using pdfLATEX and Klaus Guntermann’s PPower4.

References

Anagnostou, E. and Hadzilacos, V. 1993. Tolerating transient and permanent failures. In WDAG93
Distributed Algorithms 7th International Workshop Proceedings, Springer LNCS:725 (1993), pp. 174–188.

Arora, A. and Gouda, M. 1993. Closure and convergence: a foundation of fault-tolerant computing. IEEE
Transactions on Software Engineering 19, 1015–1027.

Beauquier, J., Debas, O., and Kekkonen, S. 1996. Fault-tolerant and self-stabilizing ring orientation. In
Structure, Information and Communication Complexity (SIROCCO96) (1996), pp. 59–72. Carleton University
Press.

Beauquier, J. and Kekkonen, S. 1996. Making FTSS is hard. In International Conference on Software
Engineering (ICSE’96) (1996), pp. 91–96.

Beauquier, J. and Kekkonen-Moneta, S. 1997a. Fault-tolerance and self-stabilization: impossibility results
and solutions using self-stabilizing failure detectors. International Journal of Systems Science 28, 11, 1177–1187.

Beauquier, J. and Kekkonen-Moneta, S. 1997b. On ftss-solvable distributed problems. In Proceedings
of the Third Workshop on Self-Stabilizing Systems (1997), pp. 64–79. Carleton University Press.

Chandra, T. D. and Toueg, S. 1996. Unreliable failure detectors for reliable distributed systems. Journal
of the ACM 43, 2 (March), 225–267.

http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/


20/18

Dolev, S., Israeli, A., and Moran, S. 1993. Self-stabilization of dynamic systems assuming only read/write
atomicity. Distributed Computing 7, 3–16.

Gopal, A. and Perry, K. 1993. Unifying self-stabilization and fault-tolerance. In PODC93 Proceedings of
the Twelfth Annual ACM Symposium on Principles of Distributed Computing (1993), pp. 195–206.

Masuzawa, T. 1995. A fault-tolerant and self-stabilizing protocol for the topology problem. In Proceedings of
the Second Workshop on Self-Stabilizing Systems (1995), pp. 1.1–1.15.

Matsui, M., Inoue, M., Masuzawa, T., and Fujiwara, H. 2000. Fault-tolerant and self-stabilizing
protocols using an unreliable failure detector. IEICE Transactions on Fundamentals of Electronic Communications
and Computer Sciences E83D, 10, 1831–1840.

Nesterenko, M. and Arora, A. 2002. Stabilizing dining philosophers with optimal crash failure. In ICDCS02
The 22nd IEEE International Conference on Distributed Computing Systems (2002), pp. ??–??



21/18

Additional Emergency Slides



22/18

Previous Work in More Detail
• Usually Gopal and Perry [1993], Anagnostou and Hadzilacos [1993] and Arora

and Gouda [1993] are referenced as starting points for explicit consideration of
crash failures in the context of self-stabilization.

• Note that detectable permanent faults can be treated as transient faults in the
self-stabilization methodology.

• We will start off from Anagnostou and Hadzilacos [1993]; four lines of follow-up
work:

– Masuzawa [1995]: ftss for the topology problem.
– Beauquier, Debas, and Kekkonen [1996, Beauquier and Kekkonen-Moneta

[1997b, Beauquier and Kekkonen-Moneta [1997a, Beauquier and Kekkonen
[1996]: solving ftss with failure detectors.

– Matsui, Inoue, Masuzawa, and Fujiwara [2000]: ftss using unreliable failure
detector.

– Nesterenko and Arora [2002]: stabilizing dining philosophers with optimal
crash failure.



23/18

Previous Work (cont.)

• Results from Anagnostou and Hadzilacos [1993]:

– ftss impossible for counting ring size.
– definition of “failure sensitive”
– ftss possible for establishing unique IDs

• Results from Masuzawa [1995]

– ftss topology problem solvable when neighbor IDs are known (k crashes in
(k + 1)-connected networks)

– ftss not solvable using only connectivity or only neighbor IDs

• Results from Beauquier and Kekkonen-Moneta [1997a]

– ftss impossible for round synchronization
– (k + 1)-ftss counting impossible for k-centered ring
– �P solves ftss


