
1/35

Formalization and Verification
of Fault Tolerance and Security

Felix Gärtner

TU Darmstadt, Germany

fcg@acm.org



2/35

Example: Space Shuttle

S
T

S
51

D
is

co
ve

ry
,
h
t
t
p
:
/
/
s
p
a
c
e
f
l
i
g
h
t
.
n
a
s
a
.
g
o
v
/



3/35

Fault-tolerant Operation
[Spector and Gifford 1984]

• Five redundant general purpose computers.

• Four of them run the avionics software in parallel.

• Majority vote of computation results.

• “Fail-operational, fail-safe.”

• Fifth computer runs backup system (written by

separate contractor). Primary contractor: IBM.



4/35

Critical Infrastructures

h
t
t
p
:
/
/
w
w
w
.
c
s
.
v
i
r
g
i
n
i
a
.
e
d
u
/
~
s
u
r
v
i
v
e

• Critical infrastructures must be dependable

(in this talk meaning fault-tolerant and secure).



5/35

Personal Motivation

• My . . .

– background: fault-tolerance, formal methods.

– experience: formal methods help find bugs.

– concern: need to formalize issues first (state what we

mean).

– claim: we know how to do this in fault-tolerance, not

so much in security.



6/35

Overview

1. Fault tolerance (60% of talk).

• What does “fault tolerance” mean?

• How can it be formalized and verified?

2. Security (30%).

• What does “security” mean and how can it be

formalized???



7/35

Informal View of Fault Tolerance

• Definition: Maintain some form of correct behavior in

the presence of faults.

• Correct behavior: specification.

• Faults:

– memory perturbation (cosmic rays),

– link failure (construction works),

– node crash (power outage),

– . . .



8/35

Formal View of Fault Tolerance

• System: state machine/event system with interface.

• Specification: look at functional properties defined on

individual executions of the system.

• Safety properties: “always . . . ”.

• Liveness properties: “eventually . . . ”.

• Abstract away from real time.



9/35

Safety and Liveness

• Safety properties: observable in finite time.

• Examples: mutual exclusion, partial correctness.

• Liveness property: violated after infinite time.

• Example: starvation freedom, termination.

• Safety and liveness are fundamental [Alpern and

Schneider 1985; Gärtner 1999a].



10/35

Faults. . .

• can be modelled as unexpected events [Cristian 1985].

• are tied to one level of abstraction

[Liu and Joseph 1992].

• Adding and “removing” state transitions is enough

[Gärtner 2001a].

• are formalized as a fault assumption.



11/35

Fault Tolerance Example
• Network of workstations with point-to-point links.

• Fault assumption: links and workstations can crash,

but network stays connnected.

• We want to do reliable broadcast.

• Specification (desired properties):

– A message which is delivered was previously

broadcast (safety).

– A broadcast message is eventually delivered on all

surviving machines (liveness).



12/35

Fault on one Level of Abstraction

• System = composition of systems.

system

subsystem subsystem

interface

interaction



13/35

Local and Global Fault Assumptions

• Local fault assumption: add behavior to fault regions.

• Example: node crash allows processes to stop.

• Global fault assumption: restrict behavior again.

• Example: network stays connected.



14/35

Fault Assumptions as Transformations
[Gärtner 1998]

ideal
environment

system A

environment
faulty

system A′
transformation

program

fault assumption

ideal problem
specification S

fault-tolerance
specification S′

specification
transformation



15/35

Verification

ideal
environment

system A

environment
faulty

system A′
transformation

program

fault assumption

ideal problem
specification S

fault-tolerance
specification S′

specification
transformation

correctness correctness



16/35

Usual Verification of Fault Tolerance

1. Choose fault assumption.

2. Weaken specification (if needed).

3. Transform system.

4. Verify system.



17/35

Transformational Approach [Gärtner 1999b]

1. Choose fault assumption.

2. Weaken specification (if needed).

3. Prove that original system satisfies specification.

4. Transform system.

5. Prove only items which have changed (use tools like

VSE, PVS, . . . ).



18/35

Potential of Re-Use

ideal
environment

system A

environment
faulty

system A′
transformation

program

fault assumption

ideal problem
specification S

fault-tolerance
specification S′

specification
transformation

correctness correctness



19/35

Case Study [Mantel and Gärtner 2000]

• Example: reliable broadcast.

• Proved safety part using industrial strength verification

tool VSE [Hutter et al. 1996].

• Transformational approach applied.

• Benefit: re-use of specification and proofs.



20/35

Re-use of Specification

Actions

ActionList

SafetyProperties

ProcessList

MessageSets

Messages

AdmissibleTraces

Broadcast

Traces

States

ChannelMatrix

ChannelList

UChannel

ProcessesUpDownList

CrashActions

CrashAction-
List

CrashStates

CrashTraces

Properties
CrashSafety-

Traces
CrashAdmissible-

ReliableBroadcast

th
eo

rie
saff

ec
ted

by
tra

ns
fo

rm
ati

on



21/35

Re-use of Proofs

B5B4B3B2B1’B1 crash



22/35

Fault Tolerance Summary

• We basically know how to deal with fault tolerance.

• Formalizations and verification methods are quite

mature.

• Area has a solid formal foundation.



23/35

Fault Tolerance and Security

• Can research in security benefit from fault tolerance?

“Fault tolerance and security are instances of a more

general class of property that constrains influence.”

Franklin Webber, BBN (during SRDS2000 panel)

• Example: tolerate malicious behavior by assuming

Byzantine faults (like in ISS).



24/35

Informal View of Security

• Security is CIA [Laprie 1992]:

– Confidentiality: non-occurrence of unauthorized

disclosure of information.

– Integrity: non-occurrence of inadequate information

alterations.

– Availability: readiness for usage.

• Conjecture: Everything is CIA! [Cachin et al. 2000]



25/35

Formal View of Security

• Recall concepts of safety and liveness (from fault

tolerance).

• We can model a lot of notions from security with these

concepts, but not all.

• Benefits:

– Well understood formalisms.

– Good proof methodologies and tool support.



26/35

Safety and Liveness in Security

• Access control is safety [Schneider 2000; ?].

• Aspects of confidentiality are safety

[Gray, III. and McLean 1995].

• Aspects of integrity are safety,

e.g. “no unauthorized change of a variable”.

• Aspects of availability are liveness,

e.g. “eventual reply to a request”.



27/35

Fair Exchange [Asokan et al. 1997]

• Two participants A and B with electronic items.

• How to exchange the items in a fair manner? Formally:

– Effectiveness: if exchange succeeds then items

matched the expectation and both participants have

well behaved (safety).

– Termination: eventually the protocol will terminate

with success or abort (liveness).

– Fairness: in case of an unsuccessful exchange, ange,

nobody wins or loses something valuable.



28/35

Formalizing Fair Exchange
[Gärtner 2001b]

mA

iB

mB

iA
dA

dB
sB

eB

sA

eA
A

inputitem

description
malevolence

output item

success/abort

B

x, x, x, . . .

Y, . . . , Y,X,X, . . .

x, Y, . . . , x, Y, x,X, x,X, . . .

z, z, z, . . .

z, Y, . . . , z, Y, z,X, z,X, . . .



29/35

Higher Level Properties

• Consequence: Restriction of information flow is neither

safety nor liveness.

• Property of the type: if trace x,X, x,X is possible,

then trace z,X, z,X must be possible too.

• Usually formalized as closure conditions on trace sets:

σ ∈ S ⇒ f(σ) ∈ S

• Properties of properties, sets of sets of traces.



30/35

Original Approach

• Non-interference [Goguen and Meseguer 1982].

• Descendants with their own problems [McLean 1994]:

– Generalized non-interference.

– Restrictiveness.

– Non-inference.

– . . .

• Possibilistic properties.



31/35

Possibilistic Properties

• Pure non-interference is too strong.

• There is progress in weakening the definition to make it

practical [Mantel 2000].

• First results available [Focardi et al. 1997].

• To be investigated: relation to other ways to specify

security [Pfitzmann et al. 2000].



32/35

Motivation Reminder

• Formal methods are no silver bullet, but they help to

find bugs in critical systems.

• Starting point: formalization of central concepts.

• We know how to do that in fault tolerance.

• But fault tolerance seems “easy” compared to security.

• Security defines a new class of properties.



33/35

Historic Perspective

“The first wave of attacks is physical [e.g. cut wires].

But these problems we basically know how to solve.”

→ fault tolerance

The second wave is syntactic [e.g. exploiting

vulnerabilities]. We have a bad track record in protecting

against syntactic attacks. But at least we know what

the problem is.

→ security models

Bruce Schneier (Inside Risks, Dec. 2000)



34/35

Conclusions 1/2

• We seem to have managed dealing with physical

attacks.

• Currently trying to cope with syntactic ones.

• We need a thorough understanding of the concepts

involved.

• Formal methods can support rigorous anaysis.

• Formalization is the first step.



35/35

Conclusions 2/2

• We’ve come a long way in formal analysis.

• Milestones: safety, liveness, (linear) temporal logic for

modeling functional (trace set) properties.

• Shifting to more difficult properties: security,

possibilistic properties.

• Open issue: Is this formalization adequate/useful?

• What about semantic attacks (e.g. stock market

hoaxes)?



36/35

Acknowledgments

• Slides produced using pdfLATEX and Klaus Guntermann’s PPower4.

References

Alpern, B. and Schneider, F. B. 1985. Defining liveness. Information
Processing Letters 21, 181–185.

Asokan, N., Schunter, M., and Waidner, M. 1997. Optimistic
protocols for fair exchange. In T. Matsumoto Ed., 4th ACM Conference
on Computer and Communications Security (Zurich, Switzerland, April
1997), pp. 8–17. ACM Press.

Cachin, C., Camenisch, J., Dacier, M., Deswarte, Y., Dobson, J.,

Horne, D., Kursawe, K., Laprie, J.-C., Lebraud, J.-C., Long,

http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/


37/35

D., McCutcheon, T., Müller, J., Petzold, F., Pfitzmann, B.,

Powell, D., Randell, B., Schunter, M., Shoup, V., Veŕıssimo,

P., Trouessin, G., Stroud, R. J., Waidner, M., and Welch,

I. S. 2000. Reference model and use cases. Deliverable D1 of the
MAFTIA project [MAFTIA ].

Cristian, F. 1985. A rigorous approach to fault-tolerant programming.
IEEE Transactions on Software Engineering 11, 1 (Jan.), 23–31.

Focardi, R., Ghelli, A., and Gorrieri, R. 1997. Using non
interference for the analysis of security protocols. In Proceedings of
DIMACS Workshop on Design and Formal Verification of Security
Protocols (DIMACS Center, Rutgers University, Sept. 1997).

Gärtner, F. C. 1998. Specifications for fault tolerance: A comedy of
failures. Technical Report TUD-BS-1998-03 (Oct.), Darmstadt University
of Technology, Darmstadt, Germany.

Gärtner, F. C. 1999a. Fundamentals of fault-tolerant distributed
computing in asynchronous environments. ACM Computing Surveys 31, 1



38/35

(March), 1–26.

Gärtner, F. C. 1999b. Transformational approaches to the specification
and verification of fault-tolerant systems: Formal background and
classification. Journal of Universal Computer Science (J.UCS) 5, 10 (Oct.),
668–692. Special Issue on Dependability Evaluation and Assessment.

Gärtner, F. C. 2001a. Formale Grundlagen der Fehlertoleranz in
verteilten Systemen. Ph. D. thesis, Fachbereich Informatik, TU Darmstadt.
forthcoming.

Gärtner, F. C. 2001b. Formalizing fairness in electronic commerce using
possibilistic security properties. Technical report, Darmstadt University of
Technology, Department of Computer Science. to appear.

Goguen, J. A. and Meseguer, J. 1982. Security policies and security
models. In Proceedings of the 1982 Symposium on Security and Privacy
(SSP ’82) (Los Alamitos, Ca., USA, April 1982), pp. 11–20. IEEE
Computer Society Press.

Gray, III., J. W. and McLean, J. 1995. Using temporal logic to



39/35

specify and verify cryptographic protocols. In Proceedings of the Eighth
Computer Security Foundations Workshop (CSFW ’95) (Washington -
Brussels - Tokyo, June 1995), pp. 108–117. IEEE.

Hutter, D., Langenstein, B., Sengler, C., Siekmann, J. H.,

Stephan, W., and Wolpers, A. 1996. Verification support
environment (VSE). High Integrity Systems 1, 6, 523–530.

Laprie, J.-C. Ed. 1992. Dependability: Basic concepts and Terminology,
Volume 5 of Dependable Computing and Fault-Tolerant Systems.
Springer-Verlag.

Liu, Z. and Joseph, M. 1992. Transformation of programs for
fault-tolerance. Formal Aspects of Computing 4, 5, 442–469.

MAFTIA. Maftia home – malicious- and accidental-fault tolerance for internet
applications. Internet:
http://www.newcastle.research.ec.org/maftia/.

Mantel, H. 2000. Possibilistic definitions of security - an assembly kit. In
Proceedings of the 13th IEEE Computer Security Foundations Workshop,

http://www.newcastle.research.ec.org/maftia/


40/35

(Cambridge, England, July 2000). IEEE Computer Society Press.

Mantel, H. and Gärtner, F. C. 2000. A case study in the mechanical
verification of fault tolerance. Journal of Experimental & Theoretical
Artificial Intelligence 12, 4 (Oct.). to appear.

McLean, J. 1994. Security models. In J. Marciniak Ed., Encyclopedia
of Software Engineering . John Wiley & Sons.

Pfitzmann, B., Schunter, M., and Waidner, M. 2000. Secure
reactive systems. Research Report RZ 3206 (#93252) (Feb.), IBM
Research.

Schneider, F. B. 2000. Enforceable security policies. ACM Transactions
on Information and System Security 3, 1 (Feb.), 30–50.

Spector, A. and Gifford, D. 1984. The space shuttle primary
computer system. Communications of the ACM 27, 9, 874–900.



41/35

Abstract

It is often argued that fault tolerance and security are similar properties and can be achieved by similar means. In this

talk I will first give an overview of methods used to formalize fault tolerance, especially those aimed at verification and

validation of fault-tolerant systems, and briefly present a case study in which these methods have been successfully

applied. In the remaining part of the talk, I will sketch different ways how security properties have been formalized and

how experience from fault tolerance can help in the clarification of the issues involved. It turns out that while some

aspects of security are in fact closely related to fault tolerance, other aspects (like confidentiality) are fundamentally

different in nature. To initiate discussion, I will speculate on promising ways of how to deal with these issues from a

practicioner’s point fo view.



42/35

Appendix: Proof that Fairness is not a
Trace Set Property

F assumed traceset
absenceof info flow

A set of
traces is fair

all unsuccessful

U

restrictionof A to
all traces that giveaway

theitem


