
1/30

Consistent Detection of Global Predicates
in Asynchronous Systems with Crash Faults

Felix Gärtner

Darmstadt University of Technology, Germany, felix@informatik.tu-darmstadt.de

joint work with

Sven Kloppenburg

Systeam Engineering, Darmstadt, Germany, sven@syseng.de

(appears at SRDS 2000)



2/30

Motivation

“We are looking for software which also works in very large distributed systems.”



3/30

Overview

• Recap: observation in (fault-free) asynchronous systems (7 slides).

• Recap: modalities possibly and definitely (2 slides).

• Observation in asynchronous systems with crash faults (5 slides).

• Modalities negotiably and discernibly (4 slides).

• Base idea of detection algorithms (6 slides).



4/30

Asynchronous systems

• Set of n application processes p1, . . . , pn connected by a communication network.

• Communication by message passing using send and receive commands.

• Messages can take arbitrarily long.

• Processes can be arbitrarily slow.

• Very weak assumptions → very realistic model.

top



5/30

Observation in asynchronous systems

• Distributed computation in which events occur.

• For every relevant event, a control message is broadcast to a set of monitor
processes .

p1

p2



5/30

Observation in asynchronous systems

• Distributed computation in which events occur.

• For every relevant event, a control message is broadcast to a set of monitor
processes .

p1

p2

m1

m2

• Global state = “cut” through the diagram.

• Monitors construct a sequence of global states Σ = S1, S2, . . .

• Σ is called an observation.



6/30

Predicate detection

• Given predicate ϕ on global states.

• Devise an algorithm with:

– (safety) no false detections of ϕ.
– (liveness) if ϕ holds, it is eventually detected.

• Naive approach: monitors check every Si for ϕ.



7/30

Difficulties of observation

• Detection predicate is ϕ ≡ x = y

• “ϕ holds?” is not observer-invariant!

p1

p2

x = 0

y = 1

x := 1

y := 2

ϕ holds!!!
m1

m2



8/30

Lattice of all global states

• Look at set of all (possibly) global states.

• Take relation on how one set evolves from another by executing a single event.

⇒ Lattice of global states.

• Observation is a path through the lattice.



9/30

Lattice example

skip

p1 p2

1

2

3

1

2

3

p1

p2

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3



9/30

Lattice example

skip

p1 p2

1

2

3

1

2

3

p1

p2

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3



9/30

Lattice example

skip

p1 p2

1

2

3

1

2

3

p1

p2

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3



9/30

Lattice example

skip

p1 p2

1

2

3

1

2

3

p1

p2

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3



9/30

Lattice example

skip

p1 p2

1

2

3

1

2

3

p1

p2

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3



9/30

Lattice example

skip

p1 p2

1

2

3

1

2

3

p1

p2

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3



9/30

Lattice example

skip

p1 p2

1

2

3

1

2

3

p1

p2

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3



9/30

Lattice example

skip

p1 p2

1

2

3

1

2

3

p1

p2

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3



9/30

Lattice example

skip

p1 p2

1

2

3

1

2

3

p1

p2

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3



9/30

Lattice example

skip

p1 p2

1

2

3

1

2

3

p1

p2

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3



9/30

Lattice example

skip

p1 p2

1

2

3

1

2

3

p1

p2

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3



9/30

Lattice example

skip

p1 p2

1

2

3

1

2

3

p1

p2

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3



10/30

Consistent and inconsistent states

• Consistent state = respects causality

• Construct vector of local sequence numbers.

• Delay causally dependent control messages.

p1

m1

p2

(0, 0) (1, 0)

(0, 0) (1, 0) (2, 0)

(2, 1)(0, 0)

(1, 0) (2, 0)

(2, 1)



10/30

Consistent and inconsistent states

• Consistent state = respects causality

• Construct vector of local sequence numbers.

• Delay causally dependent control messages.

p1

m1

p2

(0, 0) (1, 0)

(0, 0) (1, 0) (2, 0)

(2, 1)(0, 0)

(1, 0) (2, 0)

(2, 1)

message(2, 1)
delay delivery of



11/30

Modalities possibly and definitely

• Define observer-invariant notions:

– possibly(ϕ) holds iff there exists an observer which could see ϕ.
– definitely(ϕ) holds iff all observers at some time see ϕ.

• Observers construct and traverse state lattice to detect possibly or definitely.

• Safety requirement 2ϕ: observers schould never detect possibly(¬ϕ).

• Liveness requirement 3ϕ: detection of definitely(ϕ) sufficient for validation.

top



12/30

Fault tolerance issues start here!



13/30

Faulty asynchronous systems

• Fault assumption = precise description about how and which components may
fail.

• crash fault assumption = at most t processes simply stop executing steps.

• For the moment: restrict crash faults to application processes only (monitors
always stay alive).

• Now study: predicate detection in asynchronous systems with crash faults.

• Only other work: Garg and Mitchell [3].

top



14/30

New types of predicates

• Predicate upi refers to functional state of pi.

• Can be used in predicates:

– Process pi crashed after 4th event:

¬upi ∧ eci = 4

– Every process either commits or crashes:

∀i : ¬upi ∨ commiti = 1

– Process pi is waiting for a message from a crashed process:

j ∈ waitingi ∧ ¬upj



15/30

Failure detection

• Every monitor must manipulate upi so that:

– (safety) never ¬upi if pi has not crashed.
– (liveness) if pi crashes, eventually truthify ¬upi.

• This is impossible in asynchronous systems (FLP [2]).

• Terminology: failure detectors suspect and rehabilitate application processes.



16/30

Implementable failure detectors

• Can ensure liveness, but cannot avoid false suspicions.

• Best we can do: a non-crashing process is not permanently suspected [4].

• For observation purposes: add causality information to suspicions:

– “mj suspects pi after event ek on pi.”
– “mj rehabilitates pi after event ek on pi.”

• Assume: between two events at most one suspicion and rehabilitation.



17/30

Lattice over extended state space

• Treat upi as a variable on pi.

• Suspicion/rehabilitation is a simple state change of pi.

⇒ Extended state space.

• Change of up in consistent states yields again consistent states.

⇒ Integration of suspicions/rehabilitations into state lattice yields new lattice (over
extended state space).



18/30

Per monitor lattice

• Due to false suspicions monitors construct different state lattices.

• possibly/definitely not observer-invariant.

p1

p2

m1 suspectsp1

m1 rehabilitatesp1

p1 p1

p2

m1 m2

p2



19/30

Global failure detector semantics

• Problem: false suspicions.

• Solution: define “global” failure detector semantics.

• pi is suspected after ek iff . . .

– (pessimistic) ∃ a monitor which suspects pi after ek.
– (optimistic) ∀ monitors suspect pi after ek.

• Can define pessimistic and optimistic state lattice.



20/30

Optimistic/pessimistic state lattice example

p1

p2

m1 suspectsp1 after e0

m1 rehabilitatesp1 after e0

p1 p1

p2

optimistic lattice

p2

pessimistic lattice



21/30

New modalities

• Given predicate ϕ on extended state space. top

• negotiably(ϕ) holds iff possibly(ϕ) holds on pessimistic state lattice.

• discernibly(ϕ) holds iff definitely(ϕ) holds on optimistic state lattice.

p1

p2

p1 p1

p2p2

m1 suspectsp1 after e0 m1 rehabilitatesp1 after e0



21/30

New modalities

• Given predicate ϕ on extended state space. top

• negotiably(ϕ) holds iff possibly(ϕ) holds on pessimistic state lattice.

• discernibly(ϕ) holds iff definitely(ϕ) holds on optimistic state lattice.

p1

p2

p1 p1

p2p2

m1 suspectsp1 after e0 m1 rehabilitatesp1 after e0

ϕ ≡
“p1 crashes when
p2 is inbetween

events 1 and2”



21/30

New modalities

• Given predicate ϕ on extended state space. top

• negotiably(ϕ) holds iff possibly(ϕ) holds on pessimistic state lattice.

• discernibly(ϕ) holds iff definitely(ϕ) holds on optimistic state lattice.

p1

p2

p1 p1

p2p2

m1 suspectsp1 after e0 m1 rehabilitatesp1 after e0

ϕ ≡
“p1 crashes when
p2 is inbetween

events 1 and2”

ϕ ≡

(or both) execute

an event”

“either p1 or p2



22/30

Intuition behind new modalities

• Intuition of optimistic/pessimistic network protocols:

– pessimistic: be careful all the time, take immediate action.
⇒ use negotiably to trigger action.
– optimistic: go ahead and hope for the best.
⇒ use discernibly to ignore spurious suspicions.

• Understandable in analogy to possibly/definitely :

– Safety requirement 2ϕ: take action if negotiably(¬ϕ) is detected.
– Liveness requirement 3ϕ: validated if discernibly(ϕ) is detected.



23/30

Detection algorithms

• Let monitors broadcast their suspicions to all other monitors.

• Eventually all monitor lattices converge.

• Can then do possibly/definitely detection in observer invariant state lattices
(use standard algorithms).

top



24/30

Lattice convergence example

• No use starting detection on “unfinished” lattice!

p2

p1

p1

p2



24/30

Lattice convergence example

• No use starting detection on “unfinished” lattice!

p2

p1

p1

p2

m2 suspectsp2 after e2



24/30

Lattice convergence example

• No use starting detection on “unfinished” lattice!

p2

p1

p1

p2

m2 suspectsp2 after e2

after e1

m1 suspectsp2



24/30

Lattice convergence example

• No use starting detection on “unfinished” lattice!

p2

p1

p1

p2

m2 suspectsp2 after e2

after e1

m1 suspectsp2

m1 rehabilitates
p2 after e1



25/30

Causal broadcast of failure detector info

• Idea: causally broadcast failure detector events.

• You’ll always get the “next one”.

m1

m2

(1, 0) (2, 0)



25/30

Causal broadcast of failure detector info

• Idea: causally broadcast failure detector events.

• You’ll always get the “next one”.

m1

m2

(1, 0) (2, 0)

delay delivery of
control message



26/30

Settled region

• Causal broadcast of failure detector messages is useful!

• Monitors piggy back coordinates of most recent global state they have seen: per
monitor stable region.

• Take intersection of all monitor regions: globally stable region.

• Steadily expand stable region, extract optimistic/pessimistic data and do
possibly/definitely detection on it.



27/30

Settled region example

p2

p1

p1

p2



27/30

Settled region example

p2

p1

p1

p2

m2 suspectsp2 after e2

at application time (2, 2)



27/30

Settled region example

p2

p1

p1

p2

m2 suspectsp2 after e2

at application time (2, 2)

after e1 at

m1 suspectsp2

aapplication time (3, 1)



27/30

Settled region example

p2

p1

p1

p2

m2 suspectsp2 after e2

at application time (2, 2)

after e1 at

m1 suspectsp2

aapplication time (3, 1)

nochange
to beexpected
regardingm2



27/30

Settled region example

p2

p1

p1

p2

m2 suspectsp2 after e2

at application time (2, 2)

after e1 at

m1 suspectsp2

aapplication time (3, 1)

nochange
to beexpected
regardingm2

nochange
to beexpected
regardingm1



27/30

Settled region example

p2

p1

p1

p2

m2 suspectsp2 after e2

at application time (2, 2)

after e1 at

m1 suspectsp2

aapplication time (3, 1)

nochange
to beexpected
regardingm2

nochange
to beexpected
regardingm1

settled region



28/30

Advanced topics

• Algorithm works under assumption that no monitors fail.

• If monitors can fail, detection becomes harder:

– Can still detect negotiably without a stable region.
– Detection discernibly impossible, because accurate failure detection is needed.
– A weaker variant (t-discernably) can be detected at the price of having a

majority of correct monitors.



29/30

Complexity and restricted predicates

• Complexity:

– general predicate detection is NP-complete [1].
– Our detection algorithms are only wrappers around possibility/definitely

detection.
– Study restricted classes of predicates.

• Perfect failure detectors available:

– No false suspicions.
– Optimistic/pessimistic lattice are the same.

• Perfect failure detectors and crash predicates:

– Predicates are stable.
– possibly=definitely → negotiably=discernibly



30/30

Overview of results

• First work to deal with general predicates in faulty systems.

• Observation modalities negotiably and discernibly . . .

– do not solve all problems in crash-affected systems.
– reflects by their definition the inherent problem of crash failure detection.
– can be understood in analogy to possibly and definitely.
– can be detected in asynchronous systems, even if monitors may crash.

• Still a lot of work to do.



31/30

References

[1] Craig M. Chase and Vijay K. Garg. Detection of global predicates: Techniques and their

limitations. Distributed Computing, 11(4):191–201, 1998.

[2] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed

consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[3] Vijay K. Garg and J. Roger Mitchell. Distributed predicate detection in a faulty environment.

In Proceedings of the 18th IEEE International Conference on Distributed Computing Systems

(ICDCS98), 1998.

[4] Vijay K. Garg and J. Roger Mitchell. Implementable failure detectors in asynchronous systems.

In Proc. 18th Conference on Foundations of Software Technology and Theoretical Computer

Science, number 1530 in Lecture Notes in Computer Science, Chennai, India, December 1998.

Springer-Verlag.

[5] Felix C. Gärtner and Sven Kloppenburg. Consistent detection of global predicates under a weak

fault assumption. In Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems

(SRDS2000), Nürnberg, Germany, October 2000. IEEE Computer Society Press.



32/30

Acknowledgements

• Slides produced using “cutting edge” LATEX slide processor PPower4 by Klaus
Guntermann.

http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/

