
1/19

The Problem of Fair Exchange,
its Formalization,
and its Relation to

other Problems in Distributed Computing

Felix Gärtner
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Exchanging Goods on the Internet

user A user B

network

item iA item iB

descriptiondA descriptiondb
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Motivation

• Goal: Exchange the items in a fair manner.

• Fair exchange is an important notion in e-commerce:

– Exchanging electronic goods and payment.
– Digital contract signing.
– Certified e-mail.
– Mutual disclosure of identities.

• Assumption: items can be fully validated.
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Outline

• What is fair exchange (more precisely)?

• Some fair exchange protocols and some impossibilities.

• How formalize fairness?

• Relation to transactions and consensus.

• Some research issues.
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Fair Exchange Context

• A, B, iA, iB, dA and dB are given.

• System model is asynchronous.

– Users have a weak notion of timeout: A user can unilaterally decide to
abandon the exchange (i.e., enforce a termination state for himself).

• Nothing is known about other parties in the system apart from users A and B
(for now).

• Adversary assumption:

– At any point in the protocol, a misbehaving user may go silent and not
participate in the exchange anymore.

– More generally: passive Dolev-Yao model [Dolev and Yao 1983].
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Fair Exchange Properties

• A protocol solves fair exchange between two parties A and B if it satisfies three
conditions:

– Effectiveness:
If both parties behave according to the protocol, both parties do not want to
abandon the exchange, and both items match the description then, when the
protocol has completed, A has iB and B has iB.

– Termination:
A party which behaves according to the protocol will eventually complete the
protocol (and know that it has completed)

– Fairness (informal version):
If at least one party does not behave according to the protocol or if at least
one item does not match the description, then no honest participant wins or
loses anything valuable.
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Two-Party Fair Exchange: Impossibility

• In two-party fair exchange, who should go first?

• Impossibility proof by Even and Yacobi [1980]:

user A user Bround1

round2

...

roundk − 1
A does nothave iB

roundk

termination
A has iB

B has iA (otherwiseB
would not sendfinal message)

THIS IS NOT FAIR!
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Fair Exchange with an Active Trustee

• Simplest protocol: use an active trusted third party (TTP) to perform the
exchange.

a b

BA
TTP

b
a

check(b) check(a)

ab
ab

• Validation of fair exchange properties is easy.

• TTP must be trusted and available.



9/19

Optimistic Fair Exchange [Asokan et al. 1998]

• TTP can become a bottleneck: only use TTP if something goes wrong.

• Need special item properties to design optimistic protocols:

– Revocability: One item must be revocable by the TTP (e.g., an electronic
payment).

– Generatability: One item must be generatable by the TTP (e.g., a software
package deposited by the TTP).

• Idea: parties send a commitment first, which can be used by the TTP to
resolve the exchange in case of a failure.

• Cryptography comes in here:

– Challenge: how apply cryptography in the right way so that nobody can
cheat?
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Interaction Pattern of Optimistic Fair Exchange

a b

BA

TTP

verifiablecommitment on b: C(b)signed ack andcommitment ona: R,C(a)
check C(b) check R,C(a)

C(b) R,C(a)

b

check b

b
a

check a

a

R,C
(a)

a
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Why is this fair?

• Two dangerous cases can arise:

– (shown in previous figure) A may refuse to send a after receiving b:
∗ Danger: A has b but B does not have a.
∗ B can prove (through R) that B has followed the protocol.
∗ TTP can generate a on behalf of B (using C(a)).

– B may refuse to send b after receiving R,C(a):
∗ Danger: B has all it needs to resolve the protocol and hence get a.
∗ A can request an abort of the exchange at the TTP.
∗ Such a request can block the TTP from resolving the exchange for B.
∗ In case B was faster, B must deposit b at the TTP, and hence TTP can

generate b on behalf of A.

• This is a tricky business and we would like to have some formal methods help
increase confidence.

• How formalize fairness?
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How Formalize Fairness?

• Let’s use trace-based concepts from program verification!

ix inputitem
ex output (exchanged) item
dx descriptionof desired item
mx flag indicatingmalevolence
sx success/abort indication

mA

iB

mB

iA
dA

dB
sB

eB

sA

eA

A

B

• Assume: the protocol ends for a party X by writing something to eX (initially
⊥). Can write eX at most once.

• Malevolent parties “try as hard as they can” before doing this.
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Fairness Definitions

• In the following: assume items match description.

• First attempt: fairness as an “always safe” invariant.

2(eA = iB ⇔ eB = iA)

– Problem with atomicity (messages take time).

• Second attempt: fairness as postcondition (based on termination state).

2[(eA 6=⊥ ∧eB 6=⊥) ⇒ (eA = iB ∧ eB = iA)]

– This is the standard approach [Chadha et al. 2001; Shmatikov and Mitchell
2002] in formal verification.

– Definition depends on the assumptions about misbehaving parties (we require
a misbehaving party to do something, it is not an “interface definition”).
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Fair Exchange vs. Consensus
• Is fair exchange a transaction?

• Define the two-party misbehavior-tolerant consensus problem:

– Two parties propose a value v ∈ {0, 1} and can decide on a value.
– If both parties are well-behaved and decide, their decision is the same.
– The decision value must be a proposed value.
– Every well-behaving party eventually decides a value.

• Assume we have a primitive

eA := fair exchange(iA, dA)

Can we implement a distributed primitive

δ := consensus(π)

for two-party consensus?
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The Transformation

function consensus(π ∈ {0, 1}) returns δ ∈ {0, 1}
local variable t ∈ {0, 1, “aborted”}

begin
t := fair exchange(π, desc(π)); {∗ settings a and b from below ∗}
if t 6= “aborted” then return π;
t := fair exchange(π, desc(¬π)); {∗ settings c and d from below ∗}
if t 6= “aborted” then return 0; {∗ or 1 consistently ∗}
return π; {∗ settings e and f from below ∗}

end

setting a b c d e f

A 1 0 0 1 0 1
B 1 0 1 0 m m

δ 1 0 0 0 0 1
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Fair Exchange vs. Consensus (cont.)

• Hence: Fair exchange is at least as hard to solve as consensus.

– If consensus is impossible, then so is fair exchange.

• Misbehavior is indistiguishable from a crash (in one instance of fair exchange).

– Impossibility result of Fischer, Lynch, and Paterson [1985] holds.
– Corollary: There is no asynchronous two-party fair exchange protocol.

• Same impossibility result as on slide 7, but Even and Yacobi [1980] also cover
the synchronous case:

– There are synchronous two-party consensus protocols, but there are no
synchronous two-party fair exchange protocols.

– Fair exchange seems to be harder than consensus.
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Fair exchange vs. Transactions

• Addition of a TTP is a strong assumption which helps make life much easier.

– Consensus (even Byzantine agreement) is trivially solvable using a TTP.
– Transformation on slide 15 implicitly postulates a TTP.

• In consensus or atomic commitment protocols there is usually a (distinguished)
coordinator process which ensures unanimity.

– In consensus this can be one of the participating parties.
– In fair exchange, this must be an external party (secrecy of items must be

preserved).

• Intuition: fair exchange is a kind of secure transaction.
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Research Issues

• Fair exchange is a good candidate for people coming from the database or
consensus world to study security (“the next step”).

– “Secure” consensus is more than Byzantine agreement.

• Asymmetry in fair exchange (due to secrecy).

– Maybe we need to adapt the consensus definition to be amendable for better
comparison?

– Maybe we need to leave the domain of the usual trace-based formalizations?

• Recent work in the area goes in different directions:

– Use trusted hardware to implement a low-cost, low-latency TTP [Vogt et al.
2003].

– Abuse-free fair exchange [Garay and MacKenzie 1999].
– Formal analysis [Buttyán and Hubaux 2001].
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Summary

• Fair exchange is a fundamental buidling block in modern e-commerce.

• Fair exchange is a difficult and costly task since it (usually) involves a (costly)
trusted third party.

– Optimistic protocols help.

• Relation to consensus and transactions does not seem to be entirely clear.

Researchers in consensus: drop everything else and work on this!
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Extendible Consensus

• Adapt definition of consensus to an “extendible” set of processes.

• Define: set of processes Π = {p1, p2, . . . , pn}.

• Separate Π into Πa and Πb such that

– Πa ⊆ Π and Πb ⊆ Π
– Πa ∩Πb = ∅

• Define extendible consensus as follows:

– For processes in Πa (uniform) consensus must hold.
– For processes in Πb:
∗ When a process p ∈ Πb decides, then this must be the value decided by

the processes in Πa.

• Intuition: processes in Πb can join in on demand.


