
DISC 2002 1/18

Failure Detection Sequencers:
Necessary and Sufficient Information about Failures

to Solve Predicate Detection

Felix Gärtner

Laboratoire de Programmation Distribuée (LPD)

École Polytechnique Fédérale de Lausanne (EPFL)

Switzerland

fgaertner@lpdmail.epfl.ch

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

joint work with Stefan Pleisch
IBM Research, Zurich Research Laboratory, Switzerland



DISC 2002 2/18

Some Important Results

UEFA Champions League

• Deportivo La Corogne - FC Bayern München 2:1

• Bayer Leverkusen - Olympiakos Piräus 2:0

• RC Lens - AC Milan 2:1

• Maccabi Haifa - Manchester United 3:0



DISC 2002 3/18

What ist the weakest failure detector
for solving the predicate detection problem?



DISC 2002 4/18

Failure Detectors [Chandra and Toueg 1996]

• Asynchronous system model with crash failures.

p1

p2

m suspectsp

• Process p is not suspected before it crashes.

• If p crashes, it will eventually be suspected.

• Class of perfect failure detectors P.



DISC 2002 5/18

Weakest Failure Detectors

D2 D1
A

• Set D of all failure detectors, take D1, D2 ∈ D.

• D1 weaker than D2 (D1 ≤ D2) if there exists an algorithm A which transforms
output of D1 into output of D2.

• Failure detector D is weakest to solve a problem P :

1. D allows to solve P
2. Every failure detector D′ which allows to solve P is at least as strong as D

(D′ ≥ D).



DISC 2002 6/18

Predicate Detection

p1

p2

m1

m2

dummy

• Does a global predicate ϕ hold throughout the computation?

– If algorithm issues detection then ϕ held in computation.
– If ϕ holds in computation, then eventually algorithm issues detection.



DISC 2002 7/18

Example

p1

a

b

c

p2

m1

m2

dummy

• Control message is sent with every (relevant) event to all observers.

– Global state = vector of local states = cut through space/time diagram.
– Observation = sequence of global states.
– ϕ holds = ϕ is true in one state during the observation.
∗ Examples: “a has happened”, b happened before c.

– For simplicity just look at observer-independent predicates [Charron-Bost
et al. 1995].



DISC 2002 8/18

Outline

Question: What is the weakest failure detector for predicate

detection?

• Bad news: There is none! Generalization of a proof by Charron-Bost,
Guerraoui, and Schiper [2000].

• Define in analogy to failure detectors a “slightly” stronger device: failure
detection sequencer

• A particular sequencer Σ is equivalent to predicate detection.

• Implementation of Σ in synchronous systems.

• Σ and causality.



DISC 2002 9/18

Impossibility Proof

• Assume there is a failure detector-based algorithm A solving predicate
detection.

• Consider predicate ϕ ≡ crashed ∧ x = 1 in the following computation:

b

p

x = 0 x := 1
ϕ holds

t

ϕ is detected

• Since A is correct and ϕ holds, A eventually issues detection (at time t).



DISC 2002 10/18

Impossibility Proof (cont.)

• Consider similar scenario:

b

p

t

x = 0 x := 1 x := 2

ϕ detected!

• Path to a contradiction:

– Another event x := 2 occurs x := 1 and crash event.
– System is asynchronous ⇒ defer control message for some arbitrary but

finite time.
– For b at time t this scenario is indistinguishable from the previous scenario

(failure detector does not help, no matter how strong it is).
– A is deterministic: A issues detection of ϕ at t.
– But: ϕ never held, A is not correct, a contradiction.



DISC 2002 11/18

Failure Detection Sequencer

• Failure detector is a function of failures [Chandra and Toueg 1996]:

D : F → H

• Failure detection sequencer is a function of failures and the computation
history:

S : F × C → H

• Every failure detector is a failure detection sequencer (but not vice versa).

• Define a particular sequencer Σ:

– If p crashes, it will eventually be suspected.
– Process p is not suspected before it crashes.
– If a process is suspected, Σ yields the final state of that process.



DISC 2002 12/18

Σ is Equivalent to Predicate Detection

• Look at adaptive predicate detection:

– Can issue new detection predicates at runtime via fork(ϕ).
– Detects disjunction of all given predicates.
– Upon detection, issues detected(ϕ).

• If you have an adaptive predicate detection algorithm, you can build Σ:

– For any new state occurring in the computation, fork an appropriate new
instance of predicate detection.

• Can use Σ to solve adaptive predicate detection. . .



DISC 2002 13/18

Example

b

p

x = 0

fork(x = 15) fork(x = 1) fork(x = 2) detected(x = 1)

x := 1 x := 5 x := 3

• Valid behavior of adaptive predicate detection.



DISC 2002 14/18

Σ and Causality

• Idea of solving predicate detection using Σ:

– Use standard predicate detection techniques
– Use Σ to “embed” crash events consistently into the causality relation

• Can “sequence” events consistently.

p

m



DISC 2002 15/18

Implementing Σ

• Σ can be implemented in synchronous systems:

– Piggyback most recent state on heartbeats.
– If timeout on heartbeats runs out, no messages are in transit: return most

recent state.

• Σ can be implemented using P and synchronous communication:

– Send state after every step, keep most recent state.
– If P suspects p, wait for communication timeout and return state.



DISC 2002 16/18

Example: Implementation using P
and Synchronous Communication

On every process pj:
with every step FIFOsend “alive in state s” to all

On every process pi:
variables:

Di[1..n] init (⊥, . . . ,⊥) {* sequencer output *}
ri[1..n] init (δ, . . . , δ) {* timers *}
Si[1..n] init 〈initial states of p1, . . . , pn〉

algorithm:
upon FIFOreceive “alive in state s” from pj do
〈reset timer ri[j] to δ〉
Si[j] := s

upon 〈D suspects pj〉 do
〈reset timer ri[j] to δ〉

upon 〈expiry of timer ri[j]〉 do
if〈D suspects pj〉 then

Di[j] := Si[j]
endif



DISC 2002 17/18

Σ and Synchronous Systems

• Synchronizer [Awerbuch 1985]:

– Generates a sequence of rounds r1, r2, . . .
– At beginning of every round, a surviving process sends exactly one message

to every other process.
– Synchronizer guarantees that all messages from round ri are received before

round ri+1 starts.

• Synchronizers in crash-affected systems cannot be implemented even with P.

• Using Σ you can implement a synchronizer for crash-affected systems.

• Synchronizer emulates a form of global time which is available in synchronous
systems.

• Σ offers “full synchrony” without referring to a global clock.



DISC 2002 18/18

Summary

• What is the weakest failure detector for predicate detection in crash-affected
asynchronous systems?

• The mechanism which has enough power to solve predicate detection cannot be
a failure detector in the formal sense of Chandra and Toueg [1996].

• One way of defining such a mechanism: Failure detection sequencer.

– Gives final state of crashed process.
– In practice: detect a crash only if there are no messages from that process in

transit.

• Every failure detector is a sequencer, but every algorithm “is” a sequencer too:

– The “weakest sequencer” is the problem itself.
– Difficulty: Finding a problem which characterizes the problem in terms of

failure information.



DISC 2002 19/18

Acknowledgements

• Slides produced using pdfLATEX and Klaus Guntermann’s PPower4.

References

Awerbuch, B. 1985. Complexity of network synchronization. Journal of the ACM 32, 4 (Oct.), 804–823.

Chandra, T. D. and Toueg, S. 1996. Unreliable failure detectors for reliable distributed systems. Journal
of the ACM 43, 2 (March), 225–267.

Charron-Bost, B., Delporte-Gallet, C., and Fauconnier, H. 1995. Local and temporal predicates
in distributed systems. ACM Transactions on Programming Languages and Systems 17, 1 (Jan.), 157–179.

Charron-Bost, B., Guerraoui, R., and Schiper, A. 2000. Synchronous system and perfect failure
detector: Solvability and efficiency issues. In International Conference on Dependable Systems and Networks
(IEEE Computer Society) (2000).

http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/

