APPLYING THE DEPENDABILITY PARADIGM TO COMPUTER SECURITY: THEN AND NOW

Catherine Meadows Center for High Assurance Computer Systems Naval Research Laboratory Washington, DC 20375 meadows@itd.nrl.navy.mil

BACKGROUND OF THIS TALK

- In 1995, gave a talk on applying the dependability paradigm to security at the New Security Paradigms Workshop
- Went through the IFIP WG 10.4 dependability taxonomy and and each point asked the questions:
 - What is the security community doing that is relevant to this?
 - Could the security community be doing something relevant to this?
 - Should the security community be doing something relevant to this?
- Pointed out some holes in computer security research
- Purpose of this talk: to revisit these points
 - Find out what has changed
 - Find out what still needs to be done

HOW DEPENDABILITY IS GUARANTEED

- A fault is a condition in a system that can lead to failure
- To assure dependability:
 - Identify the types of failures you are worried about
 - Identify the faults that can lead to these failures
 - Do some combination of the following
 - Fault prevention: Prevent faults from occurring in the first place
 - Fault removal: Identify and remove faults after they occur
 - Fault tolerance: Build systems tolerant of faults
 - Fault forecasting: Estimate incidence of present and future faults

WHERE WE WERE IN 1995

- Research in security had concentrated on only part of this approach
- Fault prevention
 - Use of formal methods, good software engineering practices, testing, etc.
- Beginning to see fault identification and removal
 - E.g., intrusion detection
- Little on fault tolerance or forecast
 - Usually limited to worst-case assumptions -- what can go wrong will!

THESIS OF MY 1995 TALK

- Concentration on worst-case assumptions a paradigm that is becoming obsolete
- Need to develop more sophisticated fault model that can be used to help in
 - Containing (tolerating) faults
 - Predicting and measuring faults
- Three issues:
 - Maturing of the field
 - Changing emphasis of security research from secrecy to other considerations
 - Growing complexity and interconnectivity of computer systems
- All three still hold today

MATURITY

- Concentration on worst-case assumptions characteristic of a developing field
 - Test limits of theory by applying to worst-case assumptions
 - Worst-case assumptions simplest to develop and formulate
- Limitations appear as theory matures
 - Worst-case solutions often impractical to apply
 - Infinite extension of worst-case assumptions

EXAMPLE: INFORMATION FLOW AND COVERT CHANNEL ANALYSIS

- In a multilevel system, actions of high untrusted processes should be invisible to low processes
 - Any way of high affecting low could be exploitable as an illicit (covert) channel
- Information flow theories developed to specify systems invulnerable to this kind of attack
- History of information flow up to 1995 (greatly condensed)
 - Deterministic
 - Nondeterministic
 - Probabilistic
- What's needed: realistic "fault models" of covert channels and methods for evaluating theories in terms of those models
 - Example: work now in approximate non-interference
 - Measuring difference between noninterfering system and interfering one

CHANGING EMPHASIS OF COMPUTER SECURITY RESEARCH

- Early research in computer security concentrated on secrecy
- Model used: trusted mechanism controlling access of untrusted subjects to other parts of the system
- In theory, secrecy could be obtained in this model, even if untrusted part of system completely hostile, as long as
 - Access controls implemented soundly
 - Access controls not bypassable
 - All covert channels eliminated

ACCESS CONTROL MODEL NOT AS HELPFUL FOR OTHER PROPERTIES

- Integrity
 - Access control can determine what processes write what data
 - Can't control what is written
- Denial of service
 - Access control of only limited use in denial of service
 - Problem is often in identifying the attacker in the first place
- What's needed
 - Ability to recover from and fend off attacks (fault tolerance)
 - Ability to predict behavior of attackers and likely attacks (fault prevention)

GROWING COMPLEXITY AND INTERCONNECTION

- Systems don't exist in isolation
- In many ways a system will be connected to and rely upon services of other systems less than completely trustworthy
 - But not completely untrustworthy, either
- Need ways of identifying way in which components of a large distributed system can fail

OUTLINE OF A FAULT MODEL FOR SECURITY

- Faults in the security mechanism
- Hostile attacks on a system
- Misuse of a system, e.g.
 - Bad choice of passwords
 - Incorrect setting of security parameters
 - Opening attachments on email from unknown sources
 - Entrenchment of systems with known security problems
 - Etc.

SECURITY FAILURE CAN BE THE RESULT OF INTERACTION OF A NUMBER OF SYSTEM FAULTS

- Computers without proper access controls (system fault)
- Users who open attachments on email from unfamiliar sources (human misuse)
- Writers of hostile self-replicating code (hostile attack) Adds up to the virus problem

Fault Forecast and Security

- Faults in the security mechanisms
 - Likelyhood that a fault will exist
 - Difficulty of taking advantage of a fault
 - Second is better understood than the first
 - Examples
 - Capacity of a covert channel
 - Amount of effort involved in breaking a cryptosystem
- Human misuse
 - Can perform studies that will get this information
- Hostile attack
 - Data much harder to get, although information available on types of attacks that have occurred in the past
 - Parameters include: resources available, willingness to expend resources, goals of attacker

FAULT TOLERANCE AND SECURITY

- Fault tolerance permeates security
 - Multilevel secure systems tolerate Trojan Horses
 - Key distribution protocols tolerate hostile intruders with complete control of network
 - Secret sharing schemes tolerate dishonest trustees
 - Secure DBMSs tolerate those trying to infer sensitive data
- In most cases
 - Faults tolerated limited to hostile attack
 - Concentrated on worst-case scenarios
 - Includes well-delineated boundary that can't be crossed

OTHER POSSIBILITIES FOR FAULT TOLERANCE AND SECURITY

- Tolerance of misuse
 - Protocols to mitigate bad effects of choosing weak passwords
 - Heuristics for cryptographic algorithms making them easier to implement and use
- Tolerance of "ankle-biter" attacker
 - Use of honeypots to distract intruders
- Tolerance of failure of mechanisms
 - Use of multiple encryption algorithms

Open Questions

- What do you do with faults you can't forecast reliably?
- How does including security affect the dependability paradigm?
- How do we take into account changing abilities and goals of attackers?

BACK TO THE 21st CENTURY

SOME NEW PARADIGMS

• Intrusion Tolerance

- Treat intrusion as a fault
- Take similar architectural approach as in classical fault tolerance
 - Distribute information over different components of a system
 - Intruder may be able to access or damage a component of the system, but this will not allow it to access sensitive data
- Survivability
 - Define mission of a system
 - Concentrate on fulfilling mission even in presence of failure of system components
 - Failures may have different causes such as attack, accident, etc.
 - Note that mission fulfillment not the same as correct operation
 - Need to separate critical from non-critical requirements

WHERE THIS LEAVES US

- Fault-tolerance now added to fault prevention and removal in the computer security toolbox
- Comes in two flavors
 - Maintaining normal operation in face of attack
 - Example: Web-based service maintaining normal operations in face of denial of service attacks
 - Maintaining critical functions in face of effort to destroy or hobble system
 - Example: maintaining the ability to perform funds transfer in face of attempt to shut down the nationwide banking network

BUT WHAT ABOUT FAULT FORECAST?

- Still a hard problem
- Still not much on predicting security flaws or human misuse
- Predicting intrusions even harder
- One approach: rely on information from previous attacks
 - Approach of pattern-based intrusion detection
- Some open problems in fault forecast for security
 - Predicting human misuse
 - Predicting nature of attacks based on system assets and mission
 - Using fault forecast to help in formulating security strategy
 - Identify parts of system likely to be come under attack
 - Concentrate resources on protecting them
 - Determining the nature of an attack in its early stages
 - Is it an attack or not?
 - What are its goals?
 - How severe is the attack?

CONCLUSION

- Security getting closer to exploiting options offered by full dependability paradigm
 - Seeds for much of this already present in early work
- More than one way of applying dependability paradigm, depending on the nature of the problem
- Fault forecast still an open problem