On the
composablility, modularity, and security
of cryptographic protocols

Ran Canetti
IBM Research

Cryptographic protocols are basic
building-blocks In fault-tolerant systems.

Examples:

e Secure communication:

— Key exchange

— Encryption (symmetric, asymmetric)

— Digital signatures, authentication codes
« Agreement and broadcast:

— Joint coin tossing

— Secret sharing

— Sighatures

Cryptographic protocols are basic
building-blocks In fault-tolerant systems.

More examples:

e Secure distributed depositories and services:
— Threshold signatures, encryption
— Secret sharing

e Secure and private information retrieval

Analysis of cryptographic protocols is
challenging:

e Security properties are not absolute:

— Based on computational hardness
assumptions (rather than being unconditional)

— Involve probabilities of error

* Properties are complex to state, prove,
and interpret.

* Properties are context-dependent
(protocols may interact badly with each
other)

Consequently:

Systems that involve cryptographic
protocols are hard to analyze.

This holds even if the crypto is a
“'small part” of the overall system.

How to model and analyze such
systems?

The formal methods approach:
“abstract out” the crypto

* Analyze protocols in an abstract model where the
crypto primitives are “ideal boxes”. E.g.:

— Encryption provides absolute, tamper-proof
secrecy and integrity [Dolev-Yao83]

— Communication over a secure channel is
completely unseen/untamperable by third
parties [Abadi-Gordon93]

 “Hope” that the abstract protocols remain secure
when realized using “real crypto”.

Advantages of the “formal methods approach’:
— Simplifies the analysis (no computational issues)

— Separates the “crypto part” from the “non-crypto”
part

Disadvantages:

— Does not address potential flaws in, and bad
Interactions with, the “crypto part”

— Does not guarantee security of the “real protocol”

The traditional cryptographic
approach:

o Adversary Iis a computational entity
(resource-bounded Turing machine).

 Has access to the “real” bit-strings of
communication.

e Security properties are formulated
accordingly.

Advantage of the cryptographic approach:
— Guarantees security of “real protocols”

Disadvantages:
— Complex to state, prove, interpret...
— Cryptographic protocols do not “compose”

— Requires cryptographic modeling of the entire
system, even if the crypto is only a small part.

General Goal

Would like to analyze fault-tolerant systems
In @ modular way:

 Represent the cryptographic parts as
“Ideal boxes”.

* Analyze the overall system assuming
access to the “ideal crypto boxes”.

* Realize the “ideal crypto boxes” using real
cryptographic protocols

 Deduce the security of the overall,
“composed” system.

A framework for
“universally composable security” [co1]

o Security of cryptographic protocols is defined
via realizing an “idealized trusted service”

* A central property: protocols can be
composed in a very general way while
maintaining security.

Can be used to carry out the “modular analysis
approach.

Similar framework defined In [Pfitzmann-Waidner00,01]

Rest of the talk:

 Present the notion of security
* Present the composition theorem

e Discuss usage

The general definitional approach
|Goldreich-Micali-Wigderson87]

‘A protocol Is secure for some task if it “emulates” an

“Ideal setting” where the

parties hand their inputs to

a “trusted party”, who locally computes the desired

outputs and hands them

pack to the parties.’

Several formalizations of this fundamental approach exist (e.g.
[Goldwasser-Levin90,Micali-Rogaway91, Beaver91, Canetti93,

Pfitzmann-Waidner94,Canetti00,

Dodis-MicaliQ0,

Pfitzmann-Schunter-Waidner00]), But:
— Only limited “secure composition” guarantees
— Typically restricted to “function evaluation”

The general definitional approach
|Goldreich-Micali-Wigderson87]

‘A protocol Is secure for some task if it “emulates” an

“Ideal setting” where the

parties hand their inputs to

a “trusted party”, who locally computes the desired

outputs and hands them

pack to the parties.’

Several formalizations of this fundamental approach exist (e.g.
[Goldwasser-Levin90,Micali-Rogaway91, Beaver91, Canetti93,

Pfitzmann-Waidner94,Canetti00,

Dodis-MicaliQ0,

Pfitzmann-Schunter-Waidner00]), But:
— Only limited “secure composition” guarantees
— Typically restricted to “function evaluation”

How security Is defined (1)

1. Write an “ideal functionality” F that captures
the requirements of the task at hand.

F Is a “code for an ideal trusted service on

the net”. (F Captures both correctness and secrecy
requirements.)

Example:
The authenticated message
transmission functionality

Receive (A,B,m) from A

Send (A,B,m) to B and the adversary,
and halt.

Example:

The secure message transmission

functionality

Receive (A,B,m) from A

Send (A,B,m) to B, send (A,B,|m|) to the
adversary, and halt.

Example:
The key-exchange functionality F,.

Upon receiving (“exchange”,A,B,sid) from
parties A and B, do:

« choose a random key K.

« sendktoAandB.

« send (A,B,sid) to the adversary.

e Halt.

(If either party asks to set the key to some value then F,. agrees.)

Example:
The ZK functionality (for relation R)

Receive (P,V,x,w) from P
Receive (V,P,x) from V
Send (R(x,w)) to V and halt.

Note:
* V is assured that it accepts only if R(x,w)=1 (soundness)
* P is assured that V learns nothing but R(x,w) (Zero-Knowledge)

How security Is defined (l1):

2. Say that a protocol 71 emulates the ideal
process for evaluating F if no “external
environment” Z can tell between:

* A run of protocol 71

* An “ideal execution” where the parties interact with F.

(In this case, we say that 71 securely realizes
functionality F.)

A bit more precisely:

“

Ideal process: Protocol execution:

A bit more precisely:

“

Protocol execution:

Ideal process:

Pl
\ 7
P,

P, P, , R

P,

Protocol 71securely realizes F if:
For any adversary A
- There exists an adversary S
Such that no environment Z can tell
whether it interacts with:
- A run of 7lwith A

- Anideal runwith Fand S

Universal Composition:

1. Present the composition operation

2. State the composition theorem

The composition operation

(Originates with [Micali-Rogaway91])

Start with:

 Protocol £F that uses ideal calls to F

e Protocol 71 that securely realizes F

Construct the composed protocol 0

« Each call to F is replaced with an invocation of 71.

« Each value returned from 71 is treated as coming
from F.

Note: In OF parties call many copies of F.
= In 2" many copies of 7Irun concurrently.

The composition operation

(single call to F)

\p

[

The composition operation

(single call to F)

o

[/

~

4

The composition operation
(multiple calls to F)

>

AN

o)
-

)/ "

F

F:

The universal composition theorem: c.oy

Protocol 2" “emulates” protocol O F.

(That is, for any adversary A there exists an adversary A" such that
no Z can tell whether it is interacting with (071 A) or with (OF,A").)

Corollary: If OF securely realizes
functionality G then so does p”

(Weaker composition theorems were proven in e.g. [Micali-Rogaway91,
CanettiO0, Dodis-Micali00, Pfitzmann-Schunter-WaidnerQ0].)

Implications of the UC theorem

« (Can design and analyze protocols in a

modular way:
— Partition a given task T to simpler sub-tasks T,...T,
— Construct protocols for realizing T,...T,.
— Construct a protocol for T assuming ideal access to
T....T,.
— Use the composition theorem to obtain a protocol
for T from scratch.

(Analogous to subroutine composition for
correctness of programs, but with an added
security guarantee.)

Implications of the UC theorem

 Assume protocol 7l securely realizes
ideal functionality F. Can deduce security
of 71 in any multi-execution environment:

As far as the environment Is concerned,
interacting with (multiple copies of) 71

IS equivalent to interacting with

(multiple copies of) F.

Formulating “ideal crypto boxes”
within the UC framework

o Write ideal functionalities that capture
security properties of known primitives

« Show that the functionalities can be
realized via cryptographic protocols

e Can now analyze protocols assuming

access to the ideal functionalities.
(this Is often doable without getting into

computational issues)

Was done for:

 Digital signatures

* Public-key encryption
« Key exchange
Secure communication

Two-party protocols (commitment, ZK, oblivious
transfer, coin tossing,...)

General multi-party functionalities

(Work done in CO1, Pfitzmann-Waidner0O1, C-FischlinO1,
C-Lindell-Ostrovsky-SahaiO1l1, C-Krawczyk02,
Backes-Pfitzmann-Waidner03,...)

Two approaches for writing
functionalities

« Approach 1: Have multiple copies of simple ideal
functionalities [CO1].

— Define separate functionalities for encryption,
signature, authentication, key exchange, etc.

— Each functionality for a single instance.

« Approach 2: Have a single “monolithic” ideal
functionality that represents all the crypto
[BPWO3].

— A single functionality captures all instances of all
crypto primitives used in the system.

Future work

 Write ideal functionalities for representing more
cryptographic primitives.

* Prove security of more protocols in the UC
framework

e Design formal tools for analyzing security of
protocols within the UC framework, assuming
iIdeal access to crypto primitives.

End goal: Automated,
cryptographically sound analysis.

General goal.:

Would like to combine the two analytical
apporaches, to get “the best of both worlds”.

(First attempts done by [Abadi-Rogaway01,...])

