
On the
composability, modularity, and security

of cryptographic protocols

Ran Canetti
IBM Research

Cryptographic protocols are basic
building-blocks in fault-tolerant systems.

Examples:
• Secure communication:

– Key exchange
– Encryption (symmetric, asymmetric)
– Digital signatures, authentication codes

• Agreement and broadcast:
– Joint coin tossing
– Secret sharing
– Signatures

Cryptographic protocols are basic
building-blocks in fault-tolerant systems.

More examples:
• Secure distributed depositories and services:

– Threshold signatures, encryption
– Secret sharing

• Secure and private information retrieval
• …

Analysis of cryptographic protocols is
challenging:

• Security properties are not absolute:
– Based on computational hardness

assumptions (rather than being unconditional)
– Involve probabilities of error

• Properties are complex to state, prove,
and interpret.

• Properties are context-dependent
(protocols may interact badly with each
other)

Consequently:

Systems that involve cryptographic
protocols are hard to analyze.

This holds even if the crypto is a
``small part’’ of the overall system.

How to model and analyze such
systems?

The formal methods approach:
“abstract out” the crypto

• Analyze protocols in an abstract model where the
crypto primitives are “ideal boxes”. E.g.:
– Encryption provides absolute, tamper-proof

secrecy and integrity [Dolev-Yao83]

– Communication over a secure channel is
completely unseen/untamperable by third
parties [Abadi-Gordon93]

• “Hope” that the abstract protocols remain secure
when realized using “real crypto”.

Advantages of the “formal methods approach”:
– Simplifies the analysis (no computational issues)

– Separates the “crypto part” from the “non-crypto”
part

Disadvantages:
– Does not address potential flaws in, and bad

interactions with, the “crypto part”
– Does not guarantee security of the “real protocol”

The traditional cryptographic
approach:

• Adversary is a computational entity
(resource-bounded Turing machine).

• Has access to the “real” bit-strings of
communication.

• Security properties are formulated
accordingly.

Advantage of the cryptographic approach:
– Guarantees security of “real protocols”

Disadvantages:
– Complex to state, prove, interpret…

– Cryptographic protocols do not “compose”
– Requires cryptographic modeling of the entire

system, even if the crypto is only a small part.

General Goal

Would like to analyze fault-tolerant systems
in a modular way:

• Represent the cryptographic parts as
“ideal boxes”.

• Analyze the overall system assuming
access to the “ideal crypto boxes”.

• Realize the “ideal crypto boxes” using real
cryptographic protocols

• Deduce the security of the overall,
“composed” system.

A framework for
“universally composable security” [C01]

• Security of cryptographic protocols is defined
via realizing an “idealized trusted service”

• A central property: protocols can be
composed in a very general way while
maintaining security.

Can be used to carry out the “modular analysis”
approach.

Similar framework defined in [Pfitzmann-Waidner00,01]

Rest of the talk:

• Present the notion of security

• Present the composition theorem

• Discuss usage

The general definitional approach
[Goldreich-Micali-Wigderson87]

‘A protocol is secure for some task if it “emulates” an
“ideal setting” where the parties hand their inputs to
a “trusted party”, who locally computes the desired
outputs and hands them back to the parties.’

Several formalizations of this fundamental approach exist (e.g.
[Goldwasser-Levin90,Micali-Rogaway91, Beaver91, Canetti93,
Pfitzmann-Waidner94,Canetti00, Dodis-Micali00,
Pfitzmann-Schunter-Waidner00]), But:

– Only limited “secure composition” guarantees
– Typically restricted to “function evaluation”

The general definitional approach
[Goldreich-Micali-Wigderson87]

‘A protocol is secure for some task if it “emulates” an
“ideal setting” where the parties hand their inputs to
a “trusted party”, who locally computes the desired
outputs and hands them back to the parties.’

Several formalizations of this fundamental approach exist (e.g.
[Goldwasser-Levin90,Micali-Rogaway91, Beaver91, Canetti93,
Pfitzmann-Waidner94,Canetti00, Dodis-Micali00,
Pfitzmann-Schunter-Waidner00]), But:

– Only limited “secure composition” guarantees
– Typically restricted to “function evaluation”

How security is defined (I):

1. Write an “ideal functionality” F that captures
the requirements of the task at hand.

 F is a “code for an ideal trusted service on
the net”. (F Captures both correctness and secrecy
requirements.)

Example:
The authenticated message

transmission functionality

• Receive (A,B,m) from A
• Send (A,B,m) to B and the adversary,

and halt.

Example:
The secure message transmission

functionality

• Receive (A,B,m) from A
• Send (A,B,m) to B, send (A,B,|m|) to the

adversary, and halt.

Example:
 The key-exchange functionality FKE

• Upon receiving (“exchange”,A,B,sid) from
parties A and B, do:

• choose a random key k.
• send k to A and B.
• send (A,B,sid) to the adversary.
• Halt.

(If either party asks to set the key to some value then FKE agrees.)

Example:
The ZK functionality (for relation R)

• Receive (P,V,x,w) from P
• Receive (V,P,x) from V
• Send (R(x,w)) to V and halt.

Note:
• V is assured that it accepts only if R(x,w)=1 (soundness)
• P is assured that V learns nothing but R(x,w) (Zero-Knowledge)

2. Say that a protocol emulates the ideal
process for evaluating F if no “external
environment” Z can tell between:

• A run of protocol .

• An “ideal execution” where the parties interact with F.

(In this case, we say that securely realizes
functionality F.)

How security is defined (II):

π

π

π

 A bit more precisely:

P1

P3
P4

P2

F

P1

P3
P4

P2
S A

π

ZIdeal process: Protocol execution:

 A bit more precisely:

P1

P3
P4

P2

F

P1

P3
P4

P2
S A

π

Z

Protocol securely realizes F if:
 For any adversary A
 There exists an adversary S
 Such that no environment Z can tell
 whether it interacts with:

 - A run of with A
 - An ideal run with F and S

π

π

ZIdeal process: Protocol execution:

Universal Composition:

1. Present the composition operation

2. State the composition theorem

The composition operation
 (Originates with [Micali-Rogaway91])

Start with:
• Protocol F that uses ideal calls to F
• Protocol that securely realizes F
Construct the composed protocol :
• Each call to F is replaced with an invocation of .
• Each value returned from is treated as coming

from F.

Note: In F parties call many copies of F.
 � In many copies of run concurrently.

π
π

π
π

π π

ρ

ρ
ρ

ρ

The composition operation
(single call to F)

F

�ρ

ρρ

ρ

The composition operation
(single call to F)

F

�

 π

 π π

 π

ρρρ

ρρ
ρ

ρ

ρ

The composition operation
(multiple calls to F)

F

�

FF

ρρ

ρρ

ρ ρ

ρρ πππ

π ππ πππ

πππ

The universal composition theorem: [C. 01]

 Protocol “emulates” protocol F.
 (That is, for any adversary A there exists an adversary A` such that

no Z can tell whether it is interacting with (, A) or with (F,A`).)

Corollary: If F securely realizes
functionality G then so does .

(Weaker composition theorems were proven in e.g. [Micali-Rogaway91,
Canetti00, Dodis-Micali00, Pfitzmann-Schunter-Waidner00].)

ρρ

ρ
ρ

ρρ

π

π

π

Implications of the UC theorem

• Can design and analyze protocols in a
modular way:

– Partition a given task T to simpler sub-tasks T1…Tk

– Construct protocols for realizing T1…Tk.
– Construct a protocol for T assuming ideal access to

T1…Tk.
– Use the composition theorem to obtain a protocol

for T from scratch.

 (Analogous to subroutine composition for
correctness of programs, but with an added
security guarantee.)

Implications of the UC theorem

• Assume protocol securely realizes
ideal functionality F. Can deduce security
of in any multi-execution environment:

 As far as the environment is concerned,
interacting with (multiple copies of)
is equivalent to interacting with
(multiple copies of) F.

π

π

π

Formulating “ideal crypto boxes”
within the UC framework

• Write ideal functionalities that capture
security properties of known primitives

• Show that the functionalities can be
realized via cryptographic protocols

• Can now analyze protocols assuming
access to the ideal functionalities.
(this is often doable without getting into
computational issues)

Was done for:

• Digital signatures
• Public-key encryption
• Key exchange
• Secure communication
• Two-party protocols (commitment, ZK, oblivious

transfer, coin tossing,…)
• General multi-party functionalities

(Work done in C01, Pfitzmann-Waidner01, C-Fischlin01,
C-Lindell-Ostrovsky-Sahai01, C-Krawczyk02,
Backes-Pfitzmann-Waidner03,…)

Two approaches for writing
functionalities

• Approach 1: Have multiple copies of simple ideal
functionalities [C01].
– Define separate functionalities for encryption,

signature, authentication, key exchange, etc.
– Each functionality for a single instance.

• Approach 2: Have a single “monolithic” ideal
functionality that represents all the crypto
[BPW03].
– A single functionality captures all instances of all

crypto primitives used in the system.

Future work

• Write ideal functionalities for representing more
cryptographic primitives.

• Prove security of more protocols in the UC
framework

• Design formal tools for analyzing security of
protocols within the UC framework, assuming
ideal access to crypto primitives.

End goal: Automated,
cryptographically sound analysis.

General goal:

Would like to combine the two analytical
apporaches, to get “the best of both worlds”.

(First attempts done by [Abadi-Rogaway01,…])

