
1/23LPD LATEX Tutorial

Felix Gärtner

June 3, 2003

Goals:

• Some basics of typography and TEX operation

• Logical vs. visual markup

• Beautiful graphics with xfig and Metapost

• Producing pdf

This material is available at
http://lpdwww.epfl.ch/fgaertner/latex

2/23

Book Printing vs. Ordinary Typing [Knu90, Ch. 2]

• Adjustments, when moving from typewriter to a computer terminal
(e.g., difference between digit ‘1’ and lowercase letter ‘l’).

• More adjustments when moving from computer terminal to book
publishing:

• Keyboard has undirected quote mark ("), typographic quote marks
are directed:

‘‘I understand.’’

yields: “I understand.”

3/23

Book Printing vs. Ordinary Typing (cont.)

• Four forms of hyphens:

– normal hyphen (-) for compound words like ‘daughter-in-law’.
– en-dash (–) for number ranges like ‘pages 1–3’.
– em-dash (—) for punctuation in sentences—sometimes these ones

are simply called dashes.
– minus sign (−) in math formulas.

• Try and distinguish these hyphens:

– for a hyphen, type a single hyphen ‘-’
– for an en-dash, type two hyphens ‘--’
– for an em-dash, type three hyphens ‘---’
– for a minus sign, type a hyphen in math mode ‘$-$’

4/23

Controlling TEX [Knu90, Ch. 3]

• Keyboard is too limited to be able to encode all typographic
commands directly.

• Escape character let’s you switch to “instruction mode” of TEX.

• In TEX, escape character is the backslash ‘\’

• Typesetting instruction: ‘\〈typesetting command〉’

• Example: ‘\TeX’ means ‘typeset the TEX logo’

• Example: ‘\"’ means ‘put accent over following character’

• First type is a control sequence, second type is a control symbol.

5/23

Controlling TEX (cont.)

• Control symbols: backslash plus one additional character.

– Examples: accents ‘\’’ or ‘\‘’

• Control sequences: backslash plus sequence of letters A..Z and a..z

– Control sequence ends at first non-letter character. If this character
is a space, it is eaten up.
\TeX ignores spaces after control words.
gives: TEXignores spaces after control words.

– But: ‘the logo ‘\TeX’’
– If you need a space, write ‘\TeX\ is good’
– Non-breakable space: ‘\TeX~is good’

6/23

Grouping [Knu90, Ch. 5]
• Special characters ‘{’ and ‘}’ can be used for grouping, similar to a

scope.

• Commands and definitions inside the group do not affect definitions
outside of the group.

• Example font switching: ‘{\large larger text} and smaller’
instead of ‘\large larger text \normalsize and smaller’

• Also holds for type changing (bold, italics, etc.).

• Empty group can be used to end control sequences: ‘\TeX{}’

• Remark: we’re silently switching from TEX to LATEX now; LATEX is just a macro
package using plain TEX commands (size switching commands are only in LATEX).

7/23

Grouping (cont.)

• Grouping also used for defining the reach of control sequences.

• Example: \textit{This is italics.}

• If a control sequence needs an argument, it either takes the next letter,
control sequence or the next group.

– ‘\textit{This is \textbf{bold}.}’
– ‘\textit\TeX{}’
– But: ‘\textit This is italics’
– and: ‘\textitThis is italics’

• Same rules: use of grouping in math mode.

8/23

How TEX reads what you type [Knu90, Ch. 7]

• This is for people who use a text editor (like emacs) for editing
manuscripts.

• Rules:

– A 〈return〉 is like a space.
– Two spaces in a row count as one space.
– A blank line denotes the end of a paragraph.

• A comment character ‘%’ escapes the return (like a backslash in many
programming tools).

• You can use spacing to structure your file (example follows).

9/23

How TEX reads what you type (cont.)

You can insert linebreaks at any point in a paragraph without
ending it. If you need a paragraph, insert one (or more) blank
lines.

You can use the rules to structure the input text. If you have
a displayed math formula, you can write
%

$$x + y = z$$
%

to visually separate it in the input file. If necessary, you
can also avoid spaces at the end of line like in th%
is example. You can also indent text to follow grouping:

10/23

\begin{center}
\begin{large}
This is the major title

\end{large}

and this the subtitle
\end{center}

And you can use empty lines to visually separate items in
lists:
%

\begin{itemize}

\item Empty lines before and after items are ignored

\item So it looks much better in the input file. You can

11/23

use indentation here too.

\end{itemize}
%

You can visually separate the following lines without inserting
a paragraph.

12/23

How TEX reads what you type (cont.)

• Like the backslash, there are other special characters which don’t
mean what they look like:

– Beginning and ending of group: ‘{’ and ‘}’
– Toggle math mode: ‘$’
– Alignment and parameter: ‘&’ and ‘#’
– Superscript and subscript: ‘^’ and ‘_’
– Comment character: ‘%’

• All these characters have to be escaped to be printed, e.g., ‘\&’ for ‘&’

13/23

Logical Markup vs. Visual Markup

• Markup are the control sequences within text (HTML is another
markup language).

• Visual markup directly refers to the appearance: ‘\textit{emphasized}’

• Logical markup refers to logical role of text, indirectly refers to
appearance: ‘\emph{emphasized}’

• Logical markup separates contents from layout; LATEX was written to
promote logical markup.

• FCG’s most often stated rule in using LATEX:

Always use logical markup instead of visual!

14/23

Logical Markup vs. Visual Markup (cont.)
• Example:

Consensus is defined using two primitive operations propose and
decide. If a process invokes propose(v) we say that it proposed v.

• Maybe written as:

Consensus is defined using two primitive operations
\textit{propose} and \textit{decide}. If a process
invokes $propose(v)$ we say that it proposed v.

• Gives:

Consensus is defined using two primitive operations propose and
decide. If a process invokes propose(v) we say that it proposed
v.

15/23

Logical Markup vs. Visual Markup

• Two objections:

– ‘$propose$’ is the product of p, r, o, . . . not the identifier ‘propose’
(awfull spacing). Look for example at ‘definitely’ vs. ‘definitely ’.

– What if you decide to change from italics to slanted?

• The primitives propose and decide should be marked up (logically) as
“primitives”, not as italicized words.

Consensus is defined using two primitive
operations \primitive{propose} and
\primitive{decide}. If a process invokes
$\primitive{propose}(v)$ we say that it
proposed v.

16/23

Defining your own Logical Markup

• Use the LATEX facilities to define own commands:

\documentclass{article}
...
\newcommand{\primitive}[1]{\textit{#1}}
...
\begin{document}
...

• Invoking ‘\primitive{x}’ is now a macro substitution. Note
separation of logical and visual roles of the text.

• Small set of well-chosen logical macros sufficient.

17/23

Popular Logical Markup for LPD

\usepackage{latexsym}% for \Diamond
\newcommand{\eventually}{\Diamond}
\newcommand{\textcal}[1]{{\cal #1}}
\newcommand{\perfect}{\textcal{P}}

• Now you can write:

Solving consensus is possible using $\eventually\perfect$.

yields:

Solving consensus is possible using 3P.

18/23

Creating Graphics with xfig

• Who has used xfig? Powerful program for creating complex figures.

• Short demonstration.

• Possible to include TEX text in figure and use LATEX fonts.

• To make this available in your LATEX file, export in Metapost format.

• File ‘graph.mp’ has to be “compiled” using Metapost mpost giving a
“eps-ish” type of file ‘graph.0’.

19/23

Including Metapost Figures

• File can now be included in LATEX document:

\documentclass{article}
\usepackage[dvips]{graphicx}% note the ‘cx’
...
\begin{document}
...
\begin{center}% figure can be scaled etc.
\includegraphics[scale=0.7]{graph.0}

\end{center}
...

20/23

Example Figure

τ

τ ′
σ

k m

k′ m′

s

s

21/23

Going PDF
• Instead of invoking latex you can simply invoke pdflatex (it’s that

simple).

– You will directly get pdf output (without having to convert
Postscript to pdf).

– Works seamlessly with Metapost if you load graphicx like this:

% to make Metapost figures useable in pdflatex
% and normal latex (include as ‘file.0’)
\ifx\pdftexversion\undefined
\usepackage[dvips]{graphicx}

\else
\usepackage[pdftex]{graphicx}
\DeclareGraphicsRule{*}{mps}{*}{}

\fi

22/23

Going PDF (cont.)

• Does not work with eps files and epsfig package.

• Switch to graphicx package (epsfig is outdated anyway).

– Using normal latex you can replace calls of ‘\epsfig’ with calls to
‘\includegraphics’

• Leave away extension, then ‘\includegraphics’ will choose the
“right” file.

– pdflatex can’t handle eps file, but eps files can be converted to pdf
using epstopdf.

– If you have graph.eps and graph.pdf, then ‘\includegraphics{graph}’
will automatically choose the right file depending whether you
invoke latex or pdflatex.

23/23

Other Useful Things

• cite: handle bibliographic labels nicely (sort them, etc.)

• See the “LATEX Companion” [GMS93] for more.

• For general rules on language, wording, abbreviations, typesetting
etc. see the “Chicago Manual of Style” [Chi93]

• Indispensable AucTEX mode for emacs: http://www.gnu.org/
software/auctex/

• See also: Knuth’s booklet on “Mathematical Writing” http://
www-cs-faculty.stanford.edu/~knuth/klr.html

24/23

References

[Chi93] The Chicago Manual of Style. The University of Chicago Press,
forteenth edition, 1993.

[GMS93] Michael Goossens, Frank Mittelbach, and Alexander Samarin.
The LATEX Companion. Addison-Wesley, Reading, MA,
Reading, MA, USA, 1993.

[Knu90] Donald E. Knuth. The TEXbook. Addison-Wesley, Reading,
MA, 1990.

