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Summary. The computational power of concurrent data
types has been the focus of much recent research. Herlihy
showed that such power may be measured by the type’s
ability to implement wait-free consensus. Jayanti argued
that this ability could be measured in different ways, de-
pending, for example, on whether or not read/write regis-
ters could be used in an implementation. He demonstrated
the significance of this distinction by exhibiting a non-
deterministic type whose ability to implement consensus
was increased with the availability of registers. We show
that registers cannot increase the ability to implement
wait-free consensus of any deterministic type or of any
type that can, without them, implement consensus for at
least two processes. These results significantly impact the
study of the wait-free hierarchies of concurrent data types.
In particular, the combination of these results with other
recent work suggests that Jayanti’s h

.
hierarchy is robust

for certain classes of deterministic types.
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1 Introduction

Achieving consensus in the presence of process failures is
of fundamental importance in distributed computing.
A large body of research has studied algorithms for achiev-
ing consensus in three domains: (1) synchronous message-
passing systems, (2) asynchronous message-passing sys-
tems, and (3) asynchronous read/write memory systems.
While the first domain has produced a large number of
deterministic algorithms, it has been shown that such

algorithms do not exist in the other two [6, 8, 10, 11, 20].
Because of these results, researchers also consider algo-
rithms for consensus in asynchronous shared-object sys-
tems with primitives more powerful than simple reads and
writes [1, 2, 7, 11, 14—18, 20, 24, 26].

Another reason for taking this approach stems from
the study of wait-free implementations of concurrent data
types. Here, researchers ask questions such as the follow-
ing: ‘‘is there a wait-free implementation of type T

1
using

objects of type T
2
?’’ A concurrent implementation of

a data type is wait-free if any process can complete any
operation of the implementation in a finite number of its
own steps regardless of the behavior and speed of other
processes. Wait-free implementations are desirable in
asynchronous systems because they prevent slow pro-
cesses from slowing down faster ones. In addition, they can
tolerate any number of stopping failures. Herlihy [11]
showed a direct connection between a type’s ability to
implement wait-free consensus (i.e., provide an implemen-
tation of consensus that is wait-free) and its ability to
provide wait-free implementations of other types. In par-
ticular, he showed that consensus is universal: for any
n'0, if type T can implement wait-free consensus in
systems with n processes, then T can provide a wait-free
implementation of any type in such systems. In light of this
result, Herlihy evaluated the power of a data type by
assigning it a consensus number; this is the maximum
number of processes for which the type can be used to
implement wait-free consensus. He thus cast the universe
of concurrent data types into a hierarchy, each level of
which contains types with a particular consensus number.

Jayanti [14] refined this study by asking the following
question: what does it mean to say that a type can imple-
ment wait-free consensus? He argued that an answer re-
quired addressing the following questions.

1. Can more than one object of the type be used in the
implementation?

2. Can read/write registers (also called read/write
memory) also be used in the implementation?

Because these questions can be answered together in four
different ways, Jayanti identified four possible hierarchies
of types, one of which corresponds to Herlihy’s assignment



1 The reader should note that, while h3
1
matches Herlihy’s definitions,

his impossibility proofs apply to h3
.
. Because Jayanti’s work was the

first to demonstrate types requiring multiple objects to solve consen-
sus, the distinction was not made earlier

of consensus numbers (answering ‘‘no’’ to question 1 and
‘‘yes’’ to 2). He called these h

1
, h3

1
, h

.
, and h3

.
. A subscript

‘‘1’’ indicates that only one object of a type can be used,
while a subscript ‘‘m’’ indicates that many can be used.
A superscript ‘‘r’’ indicates that registers may be used,
while its absence indicates that they may not. Jayanti
indicated that Herlihy’s hierarchy is h3

1
.1

Given these four hierarchies, Jayanti naturally asked if
they were distinct and, if so, which best measured the
computational power of different data types. He argued
that a hierarchy does not properly measure this power if it
is not robust. Informally, a hierarchy is robust if no collec-
tion of types at low levels can implement a type at a higher
level. Jayanti showed that none of h

1
, h3

1
, and h

.
could be

robust if it were not equal to h3
.
. He then showed that both

h3
1

and h
.

were different from h3
.
, proving that only

h3
.

might be robust (h
1

cannot equal h3
.

if either h
.

or
h3
1

does not). Jayanti left the robustness of h3
.

as an open
question.

Recall that Jayanti’s hierarchy h
.

was defined by an-
swering ‘‘yes’’ to question 1 above and ‘‘no’’ to question 2;
it differs from h3

.
on whether or not registers may be used

in implementations of consensus. Jayanti proved h
.
9h3

.(and h
.

to not be robust) by exhibiting a type that was at
different levels in the two hierarchies. This type was speci-
fied nondeterministically; that is, there is (at least) one
sequence of operations on the type for which more than
one behavior is possible. This raises an obvious question:
can the same result be shown with a deterministic type?
Since most commonly used concurrent data types are
deterministic, a positive answer to this question would
imply that the non-robustess of h

.
would hold even for the

restricted class of deterministic types.
We answer this question negatively. That is, we show

that the two hierarchies give equal values for any deter-
ministic type. Thus, the nondeterminism used by Jayanti
is necessary. We also demonstrate other results relevant
to the use of registers in implementing wait-free consensus.
For all types (even nondeterministic ones), the two
hierarchies can differ only at the first level: if h

.
assigns

a type a value greater than 1, then h3
.

assigns it the same
value.

These results confirm that, in most cases, registers do
not play a special role in achieving wait-free consensus.
Other papers [3, 24] have claimed h3

.
to be robust for

certain classes of deterministic types. Combined with the
results of this paper, those results would also imply that
h
.

is also robust for these types.
Our results are proven through the introduction of

a new concurrent data type called the one-use bit.An
object of this type is a bit that can be read at most once and
written at most once. Our main results stem from the
following facts.

— A finite number of one-use bits can implement
a read/write register in a wait-free implementation of
consensus (this is shown in Sect. 4).

— Almost any type can be used to implement a one-use bit
(this is shown in Sect. 5).

These results show that almost any type can be used to
implement read/write registers in a wait-free implementa-
tion of consensus. Thus, the availability of registers does
not increase the ability of such a type to implement con-
sensus if one is allowed multiple objects of the type. The
types that cannot implement one-use bits are so weak that
they cannot implement consensus with or without the aid
of registers.

2 Background

This section presents the definitions and background ma-
terial necessary to present and interpret the results of this
paper.

2.1 Types

We define a concurrent data type with an automata-based
definition. Processes interact with an object of a type by
invoking accesses on the object’s ports and receiving re-
sponses on those ports. This section presents formal defini-
tions of these concepts.

A type is a 5-tuple T"Sn, Q, I, R, dT . The components
are n, the number of ports the type has (this limits the
number of processes that may access the type); Q, a (pos-
sibly infinite) set of states; I, a set of access invocations; R,
a set of access responses; and d, a transition function. Such
a type is called an n-ported type.An object of type T (also
called a T-object) is an instance of T that specifies, for each
port, which processes (if any) access the object through
that port. Let N

n
be M1, 2,2, nN. Type T may be either

deterministic, in which case d : Q]N
n
]I>Q]R,or non-

deterministic, in which case d : Q]N
n
]I>2Q]R. In keep-

ing with traditional automata theory [13], we assume that,
for any nondeterministic type T, d(q, j, i ) is finite for all q, j,
and i. This specification of a type indicates how processes
may access an object of type T (using invocations in I ),
how the object communicates to processes (using re-
sponses in R), and what are the legal sequential histories of
the type (specified by d). If an object of type T is in state
q when invocation i3 I appears on port j3N

n
, then the

object changes to state q@ and returns response r over port
j if and only if Sq@, rT"d(q, j, i) (if T is deterministic) or
Sq@, rT3d(q, j, i ) (if T is nondeterministic).

A type is oblivious if, for all q3Q, j
1
, j

2
3N

n
, and i3 I,

d(q, j
1
, i)"d(q, j

2
, i ). An oblivious type does not distin-

guish identical accesses on different ports. For oblivious
types, we often abuse notation and omit the second (port
number) input to the transition function. For non-oblivi-
ous types, we require that at most one process is allowed to
access each port of an object; other researchers [3] have
made other assumptions. It is also traditional to require
that each process is allowed to access at most one port of
an object [5]; we do not require this.

Invocation i on port j is useless if there is some response
r such that, for all states q, d(q, j, i )"Sq, rT (if T is deter-
ministic) or d(q, j, i)"MS q, rTN (if T is nondeterministic).
Useless invocations are sometimes needed to specify some
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types completely, and we do not provide implementations
for them in the sequel.

An operation on type T"Sn, Q, I, R, dT is an element
of N

n
]I]R, operation S j, i, rT representing the execution

of invocation i on port j with response r being returned.
A sequential history of T from a state q

0
is a sequence of

alternating states and operations (starting with q
0
) meet-

ing certain conditions. In particular, consider the sequence

H"q
0
; S j

1
, i

1
, r

1
T; q

1
; S j

2
, i

2
, r

2
T; q

2
;2.

It must be that, for all k, Sq
k
, r

k
T"dSq

k~1
, j

k
, i

k
T (if T is

deterministic) or Sq
k
, r

k
T3 d(q

k~1
, j

k
, i

k
) (if T is nondeter-

ministic). We say that state q@ is reachable from q if q@
appears in some sequential history from q. If H contains
k operations, then the length of H, denoted DH D, is k. We
define invs(H, j ) to be the sequence of invocations in H on
port j and resps(H, j ) to be the sequence of responses
returned to port j.

2.2 Implementations

This section defines what it means for one type to be
implemented by others. Informally, an implementation is
a set of objects (appropriately initialized) and deterministic
programs that operate on these objects. There is one
program for each process and for each invocation for
the type being implemented. More formally, let T"
Sn, Q, I, R, dT and let S"MO

1
, O

2
,2, O

m
N be a set of

objects such that O
j
is of type T

j
"Sn

j
, Q

j
, I

j
, R

j
, d

j
T. An

implementation of T from state q3Q from S is a tuple of
initial states Sq

1
, q

2
,2, q

m
T (q

j
3Q

j
) and a deterministic

program P
k, l

for each i
k
3 I and each l3N

n
. Each program

of the implementation specifies how the implementing
objects are to be accessed and what response should be
returned to the invocation associated with that program.
The implementation also specifies, for each port of each
implementing object O

j
, the corresponding port number of

T. If port l of T corresponds to port l
j
of O

j
, this means

that, when a program P
k, l

(i
k
3 I ) accesses O

j
, it does so

through port l
j
. We require that each port of each

O
j
correspond to at most one port of T. It is also tradi-

tional to require that each port of T correspond to at most
one port of each O

j
, although we do not require this.

There is an implementation of T from S if implementa-
tions exist from all states of T. Such an implementation is
correct if all resulting histories are wait-free [11] and
linearizable [12]. By wait-free, we mean that, in all his-
tories of the implementation, any process performing an
infinite number of steps completes every implementing
program that it begins. By linearizable, we mean that each
execution of the implementation must be equivalent to
a sequential history of the type. There must be a linear
ordering of the implemented operations (i.e., port-invoca-
tion-response triples) in the execution such that (1) the
ordering is that of a sequential history from the appropri-
ate state and (2) if the execution of two implemented
operations does not overlap in real time, then they appear
in the sequential history in their real-time order. (For
further details of these definitions, consult Herlihy [11],
Herlihy and Wing [12], or Jayanti [14].)

2.3 Some specific types

This section defines some specific types that are used in the
sequel.

2.3.1 Consensus types

The ability of a type to solve consensus is central to this
paper. We define consensus as a type and consider the
ability of different types to implement a consensus object
(see Sect. 2.2 below). The n-process binary consensus type
cons

n
is an oblivious type defined to be Sn, Q, I, R, dT,

where Q"Mo, 0, 1N, I"Mi
0
, i

1
N, R"M0, 1N, and d is de-

fined as follows:

d(o, i
0
)"S0, 0T

d(o, i
1
)"S1, 1T

d(a, i
b
)"Sa, aT for any a, b3 M0, 1N

(We can specify d without regard to port numbers as cons
nis oblivious.) Usually, consensus objects are chosen to have

state o initially. A process proposes 0 (respectively, 1) to
a cons

n
-object by invoking i

0
(respectively, i

1
). Note that

the first invocation on the object determines all future
responses, which are identical. This response is sometimes
called the consensus value of the object.

If there is an implementation of cons
n
from S, we say

that S implements n-process consensus. Note that it is trivial
to implement cons

n
from any state except o so, in the

sequel, we will equate an implementation of cons
n
with an

implementation from o.

2.3.2 Registers

Another type important in this paper is the single-reader,
single-writer bit. Note that, because such a bit has only one
writing process, that process always knows the value of the
bit and thus needs to write to it only to change it from 0 to
1 or from 1 to 0. We call this action a ‘‘flip’’, and it will be
used in place of ‘‘write’’ below. Formally, the single-reader,
single-writer bit is a 2-ported type called bit

.6
(the ‘‘mu’’

indicates that it can be used a multiple number of times
and distinguishes it from one-use bits defined in Sect. 3
below) and is defined to be S2, Q

.6
, I

.6
, R

.6
, d

.6
T, where

Q
.6

"M0, 1N, I
.6

"Mread, flipN, R
.6

"M0, 1, okN and
d
.6

is defined as follows, where v3 M0, 1N.

d
.6

(v, 1, read )"Sv, vT d
.6

(v, 2, read )"Sv, okT

d
.6

(v, 1, flip )"Sv, okT d
.6

(v, z, flip )"S1!v, okT

The process connected to port 1 (the reader) of a bit
.6

-
object can discover the state of the object using a read
invocation, while the process connected to port 2 (the
writer) can change the state using a flip invocation. Note
that flip invocations on port 1 and read invocations on
port 2 are useless.

Many papers (including this one) use the term ‘‘regis-
ter’’ or ‘‘read/write memory’’ to refer to a similar type that
is multi-reader, multi-writer, and multi-valued. We call
such a type a general register and denote it by reg. We do
not provide a formal description of this extension; it is
similar to bit

.6
, except that it is oblivious (any port can be

used either to read or to write the register) and can hold
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2 The reader should note that, while Herlihy’s model allowed only
one T-object to be used, all the impossibility results that he showed
apply for any number of objects

3 Moran and Rappoport defined a deterministic 4-ported type
W with the property that h3

.
(W )(3 and that there is a wait-free

implementation of 4-process consensus using a single W-object, four
cons

3
-objects, and read/write memory. Since h3

.
(cons

3
)"3, this

implies that h3
.

is not robust for any class of types that includes both
W and cons

3
. However, the proof by Moran and Rappoport of

h3
.
(W)(3 required the restriction that, in a 3-process system,

a single process could not access a W-object (which is 4-ported) by
more than one port. The model of Borowsky, Gafni, and Afek [3]
does not allow this restriction

m different values instead of just 2. Instead of flip, reg-
objects support a set of m different write invocations, each
of which allows a process to set the object to a specified
value. Implementations of reg from bit

.6
are discussed in

Sect. 4.1.

2.4 ¹he universality of consensus and wait-free hierarchies

Herlihy [11] demonstrated that the consensus types cons
nare universal in the following sense: there is a wait-free

implementation of any n-ported type T from some set of
general registers (reg-objects) and cons

n
-objects. Because

of this, Herlihy proposed evaluating different types by
assigning them consensus numbers. The consensus number
of type T is the largest integer n for which some set of
reg-objects and a single T-object can implement cons

n
.

Jayanti [14] questioned two of Herlihy’s assumptions
in assigning a consensus number to a type T: whether or
not reg-objects should be used in an implementation of
cons

n
and whether or not multiple T-objects can be used.2

To explore the impact of different choices here, he defined
four wait-free hierarchies:

— h
1
(T )7n if and only if one T-object can implement n-

process consensus.
— h3

1
(T )7n if and only if some set of reg-objects and one

T-object can implement n-process consensus.
— h

.
(T )7n if and only if some set of T-objects can imple-

ment n-process consensus.
— h3

.
(T )7n if and only if some set of reg- and T-objects

can implement n-process consensus.

(Thus, for example, h
1
(T) is the largest n such that a single

T-object can implement n-process consensus.) Herlihy’s
assignment of consensus number corresponds to Jayanti’s
hierarchy h3

1
. It is clear from these definitions that, for all

types T, 16h
1
(T )6h3

1
(T )6h3

.
(T) and h

1
(T)6h

.
(T)6

h3
.
(T ). In addition, standard techniques can be used to

show that, if T is n-ported, then h(T)6n (where h is any of
the hierarchies given above).

Ideally, the assignment of a consensus (or hierarchy)
number to a type should be a good measure of the type’s
computational power. The larger the number assigned, the
more power the type has to implement other types. Indeed,
Herlihy’s result on the universality of consensus shows
that, if h(T )"n (where h is any of the hierarchies given
above) and T@ has at most n ports, then there is an imple-
mentation of T@ using some number of reg- and T-objects.

Given four different ways of assigning these values, it
makes sense to consider which is best. Jayanti identified
a desirable property of hierarchies that he called robust-
ness. Hierarchy h is robust if, for every choice of n, T, and
T
1
, T

2
,2, T

m
, the relations h(T)7n and h(T

j
)(n (for all

16j6m) imply that there is no implementation of T from
any set of objects of types T

1
, T

2
,2, T

m
. Robustness im-

plies that there can be no ‘‘synergistic’’ effect that would
allow ‘‘weak’’ types to implement a ‘‘strong’’ one.

Jayanti showed that none of h
1
, h3

1
, and h

.
could be

robust if it were not equal to h3
.
. He then showed that both

h3
1

and h
.

were different from h3
.
, proving that only

h3
.

might be robust (h
1

cannot equal h3
.

if either h
.

or
h3
1

does not). Jayanti left the robustness of h3
.

as an open
question. Recent papers [3, 24] have claimed that h3

.
is

robust for certain classes of deterministic types. However,
Moran and Rappoport [21] exhibited a class of determin-
istic types for which h3

.
is not robust.3

Jayanti’s proof that h
.

differs from h3
.

exhibited a type
T with h

.
(T)"1 and h3

.
(T)72. This type is nondetermin-

istic. The remainder of this paper considers restricted
classes of types for which h

.
is shown equal to h3

.
. For

these classes, h
.

is robust if and only if h3
.

is.

3 One-use bits

The main results of this paper stem from the implementa-
tion and use of a new concurrent data type called the
one-use bit. Objects of this type are one-bit registers that
can be read only once and written only once. Section 4
shows that objects of this type can be used to implement
general registers (reg-objects) in the context of wait-free
implementations of consensus, while Section 5 shows that
it is easy to implement this type.

The one-use bit type bit
16

is defined to be
S2, Q

16
, I

16
, R

16
, d

16
T, where Q

16
"Moff, on, deadN, I

16
"

Mlook, setN, R
16
"Moff, on, okN, and d

16
is defined as follows.

d
16

(off, 1, look)"MSdead, off TN (1)

d
16

(on, 1, look)"MSdead, onTN (2)

d
16

(dead, 1, look)"MSdead, off T, Sdead, onTN (3)

d
16

(q, 1, set)"MSq, okTN (4)

d
16

(off, 2, set)"MSon, okTN (5)

d
16

(on, 2, set)"MSdead, okTN (6)

d
16

(dead, 2, set)"MSdead, okTN (7)

d
16

(q, 2, look)"MSq, okTN (8)

(Lines 4 and 8 above hold for any q3Q
16

and indicate that
the specified invocations are useless.)

State off is usually chosen as an initial state. The
process connected to port 2 can write the bit

16
-object once

by invoking set. This moves the object from state off to
state on. The process connected to port 1 can read the
object once by invoking look. If the object is in state off or
the state on, that state is returned to process. After two set
invocations or one look invocation, the object enters the
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Fig. 1. Implementations of registers

state dead. At this point, no further information can be
derived from the object from port 1 because of the type’s
nondeterminism. Note that this nondeterminism will play
no role in our use of the type (Sect. 4); a look will never be
invoked when the object is in state dead.

4 Using one-use bits

Although one-use bits (bit
16

-objects) are apparently
weaker than general registers (reg-objects, defined in
Sect. 2.3.2), we can show that, within the context of wait-
free implementations of consensus, they are equally
powerful. This is shown through the following three
observations.

1. General registers can be implemented using single-
reader, single-writer multi-use bits (bit

.6
-objects, defined

in Sect. 2.3.2).
2. For any n, any wait-free implementation of n-

process consensus, and any bit
.6

-object b used by the
implementation, there are bounds on the number of times
that b is read and flipped in any execution of the
implementation.

3. If there are bounds on the number of times that
a bit

.6
-object b can be read and flipped, then b can be

implemented by a finite number of single-use bits (bit
16

-
objects).

These are shown in Sects. 4.1—4.3 below.

4.1 Implementing general registers

A large body of literature has considered the definition and
implementation of a variety of different kinds of read/write
registers (or memory) and the relationships between these
kinds. Most recent research in wait-free computation has
considered registers that are atomic (linearizable), multi-
reader, multi-writer, and multi-valued (reg-objects).
Earlier research considered weaker kinds of registers.
Figure 1 summarizes a sequence of constructions that
allow bit

.6
-objects to be used to implement reg; the

bracketed notes are references to the bibliography.
All the constructions are wait-free and exist for any

number of processes. The following paragraph details
these constructions. Note that this is a very incomplete
account of the large volume of results that have been
produced, mentioning only those that are necessary for the
results of this paper.

Lamport [19] showed that there is an implementation
of multi-reader, single-writer, regular bits from single-
reader, single-writer, regular bits. Since regular bits are
weaker than atomic bits, this implementation can also use
bit

.6
-objects. Burns and Peterson [4], Newman-Wolfe

[22], and Singh, Anderson, and Gouda [27] all showed
that there is an implementation of multi-reader, single-
writer, atomic bits from multi-reader, single-writer, regular
bits. Peterson [23] showed that there is an implementation
of multi-reader, single-writer, atomic, multi-valued regis-
ters from multi-reader, single-writer, atomic bits. Peterson
and Burns [25] showed that there is an implementation of
multi-reader, multi-writer, atomic, multi-valued registers
(reg-objects) from multi-reader, single-writer, atomic,
multi-valued registers. It follows from all these results that
there are implementations of reg from bit

.6
-objects.

4.2 Access bounds in wait-free consensus

Suppose that there is a wait-free implementation of n-
process consensus that uses some number of registers and
T-objects. The observations of the previous section allow
us to assume that the registers are bit

.6
-objects. We show

that, for each bit
.6

-object b, there exist constants r
b

and
f
b
such that in no execution of the implementation is b read

more than r
b
times or flipped more than f

b
times.

Consider the executions of the implementation of
cons

n
as a collection of trees. Each vertex of a tree corres-

ponds to some configuration of the implementing objects
(of types bit

.6
and T) and the ‘‘program counters’’ of the

n processes in their implementing functions. The roots of
the trees correspond to possible initial configurations: the
initial states of the implementing objects and the vector of
invocations that the n processes will first apply to the
cons

n
-object (each may be i

0
or i

1
); that is, each process is

at the ‘‘entry point’’ of one of its two implementing func-
tions. A configuration C

1
is the parent of C

2
if C

2
results

from C
1

through the execution of one low-level operation
(on a bitmu-object or a T-object) by one process in its first
invocation on the cons

n
-object. (If a configuration can be

reached via multiple paths, it appears multiple times.) Any
configuration in which some process accesses the cons

n
-

object a second time does not appear in a tree. Thus,
a configuration in which all n processes have completed
their first invocations is a leaf vertex.

We consider only first invocations because any later
invocations by a process must return the same response as
first (see Sect. 2.3.1). We assume that each process stores
the first response locally and does not access any of the
implementing objects after its first invocation.

Consider any one of these trees. We show by contradic-
tion that it is finite. Assume that it is not. This means that
a form of König’s Infinity Lemma [9; Theorem 2.8, page
32] applies:

Lemma 1 (Ko~ nig). If G is an infinite digraph, with root
r and finite out-degree for all its vertices, then G has an
infinite directed path, starting in r.

The out-degree of each vertex in our trees is finite. If T is
deterministic, it is bounded by n. Any vertex has at most
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n children, one for each process. This is because the
processes are deterministic, as are bit

.6
and T. If T"

Sn, Q, I, R, dT is nondeterministic, the out-degree of
a vertex is bounded by n times the size of the largest set
d(q, j, i ) (recall that these sets are finite for nondeterministic
types).

König’s Lemma now implies that there is an infinite
path from the root of the tree. This path corresponds to
some execution of the implementation. This means that
there is an execution in which some process executes an
infinite number of steps but never completes its first invo-
cation on cons

n
. This contradicts the fact that the imple-

mentation is wait-free.
The tree described is thus finite; let h be its height, the

maximum length of a path from the root. There are 2n such
trees. This is because the initial states of the implementing
objects are the same in all trees. (the implementation must
specify a unique initial state for each such object), and only
the choice of the entry points of the n processes can vary.
Let h

.!9
be the maximum h over all the trees; since there

are finitely many trees, h
.!9

is finite. This means that in no
execution are more than h

.!9
steps executed. Thus, at most

h
.!9

accesses are invoked on any implementing object in
any execution. By choosing r

b
"f

b
"h

.!9
, we know that

in no execution of the implementation does any process
read a bit

.6
-object b more than r

b
times or flip it more

than f
b
times.

4.3 Implementing multi-use bits

This section shows how any bit
.6

-object that is accessed
a bounded number of times can be implemented with
a finite number of bit

16
-objects. Suppose that bit

.6
-object

b is initialized to v, read at most r
b

times, and flipped at
most f

b
times.

The implementation uses r
b
· f

b
-objects of type bit

16
.

These form an r
b
]f

b
array bits[12r

b
, 12 f

b
], all ele-

ments of which are initially in state off. A read on port 1 is
implemented by P

1, read
and a flip on port 2 is implemented

by P
2, flip

(see below). (Recall that the other invocations are
useless and trivially return ok.) Each row of the array
corresponds to an execution of P

1, read
and each column to

an execution of P
2, flip

. Intuitively, an execution of
P
1, read

and one of P
2, flip

‘‘communicate’’ through one
element of the array. If P

2, flip
invokes set on that element

before P
1, read

invokes look on it, the flip will be ‘‘seen’’ by
the look; otherwise, it will not. P

1, read
invokes look on

bit
16

-objects in its corresponding row until it finds one
that has not been set. P

2, flip
invokes set on all bit

16
-

objects in its corresponding column. Port 1 (respectively,
port 2) of b corresponds to port 1 (respectively, port 2) of
each of the bit

16
-objects. The reading process maintains

two local integer variables Reads and Col, while the writ-
ing process maintains local Row and Flips; these are all
initially 1.

The implementing programs use the following nota-
tion. If i is an invocation on some type T and O is a T-
object, i(O) (called an O-access) is used to indicate that the
invocation is performed and the result returned. The fol-
lowing are the implementing programs (recall that v is the
initial value of the bit

.6
-object being implemented):

P
1, read

: : while Col6f
b
and look(bits[Reads, Col])"on do

Col :"Col#1
Reads :"Reads#1

return((v#(Col!1))mod 2)

P
2, flip

: : for Row :"1 to r
b
do

set (bits[Row, Flips])
Flips :"Flips#1
return(ok)

Note that an execution of P
1, read

does not invoke look on
every bit

16
-object in its row. Instead, it starts in the col-

umn where the previous execution ended and proceeds
only until it finds a column in which its access returns off.
The on-column of an execution of P

1, read
is one less than the

value of Col at the end of that execution. It is the total
number of columns in which any execution of P

1, read
has

seen a bit
16

-object with state on. The index of an execution
of P

2, flip
is the value of Flips at the beginning of that

execution. This reflects the execution’s ordinal position
among all executions of P

2, flip
; it is also the column of the

array to whose entries the execution applies set.
To prove the correctness of the implementation, we

need to prove it linearizable and wait-free. Wait-freedom is
obvious: no execution of P

1, read
requires more than

f
b

operations and all executions of P
2, flip

use exactly
r
b
operations. To show linearizability, we must show that,

for each execution of the implementation from a state,
there is a sequential history from that state that preserves
the real-time ordering of the operations in the execution.
Consider an execution of the implementation from state
v in which P

1, read
is executed at most r

b
times and P

2, flip
at

most f
b

times. We now describe a linear ordering of the
corresponding operations. The relative order of the read
operations is that in which they were invoked, as is the
relative order of the flip operations. A read operation is
ordered before a flip if its execution’s on-column is less
than the index of the execution of the flip. It is easy to see
that, if an execution of P

1, read
has on-column c, then the

corresponding read is preceded by c flip’s in the linear
ordering.

We first show that the resulting linear ordering re-
spects the real-time ordering of the programs’ executions.
This is obvious for any pair of operations on the same
port; it remains only to show it for the ordering of a read
operation and a flip operation. Suppose that the read’s
execution has on-column c and the flip’s has index i. We
must consider two cases:

— The execution of P
1, read

completes before that of
P
2, flip

begins. In this case, the ith column of the array
bits is completely off when the P

1, read
executes (the same

is true for all previous executions of P
1, read

as well). This
means that the while loop will terminate with Col less
than equal to i; c is one less than this value of Col. Thus,
c(i and the two operations are ordered correctly.

— The execution of P
2, flip

completes before that of
P
1, read

begins. In this case, the ith column of the array
bits is completely on when P

1, read
executes, as are all

previous columns. When P
1, read

executes, it will find all
these bit

16
-objects on and advance Col to be at least

i#1; since c is one less than this value of Col, c7i.
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4 Jayanti, Chandra, and Toueg [15, Sect. 5.1.2] give a slightly
stronger definition of a trivial oblivious type. Their definition re-
quires that, for all i, p, and q, r

qi
"r

pi

Thus, 2 (c(i) and the two operations are ordered
correctly.

Finally, we need to show that this linear ordering is
indeed a sequential history from v. All flip invocations
return ok, as desired. Consider some read operation that is
preceded by f flip operations. This means that the on-
column of the corresponding execution of P

1, read
is f, and

this execution ended with Col"f#1. The execution thus
returns (v#(Col!1)) mod 2"(v#f ) mod 2. Since the
bit

16
-object was initially v and was then flipped f times,

this is the correct value.

5 Implementing one-use bits

This section illustrates two cases in which one-use bits
(bit

16
-objects) can be implemented. These are non-trivial

deterministic types and types above level 1 in the hierarchy
h
.
.

5.1 Non-trivial deterministic types

This section shows that an object of any non-trivial deter-
ministic type T can implement bit

16
. Informally, T is

non-trivial if a T-object, suitably initialized, is capable of
providing processes with some information about how it
has been accessed. Deriving an implementation of bit

16
is

much simpler for oblivious types, and this case is presented
in Sect. 5.1.1. The general case is presented in Sect. 5.1.2.

5.1.1 Oblivious types

Most, but not all, deterministic oblivious types can imple-
ment bit

16
. Some types, however, are so weak as to be

incapable of implementing any interesting type. Consider,
for example, a type T"Sn, Q, I, R, dT such that DR D"1.
Because the type must return the same response to every
invocation, there is no way that it can supply any useful
information. Formally, an oblivious type T"Sn, Q, I, R, dT
is trivial if, for every state q3Q and every invocation i3 I,
there is a response r

qi
3R such that, for each state p reach-

able from q (including q itself ), there is a state p@ such that
d(p, i )"Sp@, r

qi
T.4 A trivial oblivious type, once in-

itialized, returns the same response to each occurrence of
a given invocation; processes can gain no information by
accessing an object of the type. An oblivious type that is
not trivial is non-trivial. We now show that an object of
any non-trivial oblivious deterministic type can implement
bit

16
.

Let T"Sn, Q, I, R, dT be a non-trivial oblivious deter-
ministic type. This means that there are states q and p,
invocation i, and responses r

q
and r

p
such that r

q
9r

p
, p is

reachable from q, d(q, i )"Sq@, r
q
T (for some state q@), and

d(p, i)"Sp@, r
p
T (for some state p@). In this case, q, p, and

i are said to witness T’s non-triviality. We first show that p,

q, and i can be chosen such that p is reachable from q in
one operation.

Lemma 2. ¸et T"Sn, Q, I, R, dT be non-trivial, oblivious,
and deterministic. ¹hen there are states q and p and invoca-
tion i that witness T’s non-triviality such that p is reachable
from q in one operation.

Proof. Let q and p be the states and i the invocation that
witness T’s non-triviality. Let l71 be the number of
operations between q and p in some sequential history of
T (such a history must exist since p is reachable from q) and
suppose that p, q, and i were chosen to minimize l. If l"1,
we are done. Otherwise, let s be the state reachable from
q by the first l!1 operations that lead from q to p. Let
d(q, i)"Sq@, r

q
T, d(p, i)"Sp@, r

p
T, and d(s, i )"Ss@, r

s
T.

Since r
q
9r

p
, r

s
must be different from one of them. Note

that s is reachable from q and p is reachable from s; thus,
either q, s and i or s, p, and i witness T’s non-triviality. In
either case, fewer than l operations are needed for the
reachability. This contradicts the minimality of l. K

We now give an implementation of bit
16

from one T-
object. Let q, p, and i witness T’s non-triviality such that
there is an invocation i

4
whose operation from q leads to p;

Lemma 2 guarantees the existence of such an invocation.
We use one T-object O, initialized to state q. A look on
port 1 of the bit

16
-object is performed as follows:

P
1, look

: : if i(O )"r
q

then
/* O was still in state q */
return (off )

else
/* O was not in state q */
return (on)

A set on port 2 is performed as follows:

P
2, set

: : i
s
(O )

return (ok)

(Recall that set on port 1 and look on port 2 are useless.)
Intuitively, state q corresponds to off, p to on, and any
other state to dead.

To prove the correctness of the implementation, we
need to prove it linearizable and wait-free. Wait-freedom is
obvious: each invocation uses exactly one operation on
T-object O. To show linearizability, we must show that, for
each execution of the implementation, there is a sequential
history that preserves the real-time ordering of the opera-
tions in the execution. Consider an execution of the imple-
mentation. We now describe a linear ordering of the
corresponding operations. Since each invocation contains
exactly one O-access, order the corresponding operations
according to the order of these accesses. It is easy to see
that the resulting linear ordering respects the real-time
ordering of the programs’ executions. If the execution of
two invocations does not overlap in real time, then the
O-access of the first must precede that of the second, and
the two operations are ordered correctly.

Finally, we need to show that the linear ordering of
operations specified above is indeed a sequential history
from off. All set invocations return ok, as desired. Because
of the nondeterminism in the specification of bit

16
, all look
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5 This implies that H
0
"H

1

invocations besides the first can correctly return either off
or on, and they do so. Consider the first look invocation
and the following three cases:

— The look is first in the linear ordering. This means that
the O-access of the first execution of P

1, look
preceded all

others and thus occurred when O was in state q. There-
fore, this access returned r

q
and P

1, look
returns off, as

desired.
— The look follows exactly one set in the linear ordering.

This means that the first execution of P
2, set

first invoked
i
4
on O in state q. After this, O was in state p. The first

execution of P
1, look

then applied i to O and received
response r

p
, which is different from r

q
. Therefore,

P
1, look

returned on, as desired.
— The look follows two or more set operations in the linear

ordering. In this case, it can correctly return either off or
on, and it does so.

5.1.2 General types

The previous section showed that any non-trivial oblivious
deterministic type can implement one-use bits. The defini-
tion of triviality and the proof depended on the oblivious-
ness of the type being used. This section generalizes that
result to general types that are not necessarily oblivious.

A deterministic type is trivial if, for all ports, all finite
sequences of invocations on that port always return the
same finite sequence of responses regardless of any invoca-
tions performed (and the order in which they are per-
formed) on other ports. In other words, T"Sn, Q, I, R, dT
is trivial if, for all states q3Q, all finite histories H

1
and

H
2

from q, and all ports j3N
n
, invs(H

1
, j )"invs(H

2
, j )

implies resps(H
1
, j )"resps(H

2
, j ). A type is non-trivial if it

is not trivial. Thus, for any non-trivial T, there is a state q,
finite histories H

1
and H

2
from q, and port j such that

invs(H
1
, j )"invs(H

2
, j ) and resps(H

1
, j )9resps(H

2
, j ).

Call H
1
and H

2
a non-trivial pair from q on port j. Note that

different sequences of operations may be invoked on ports
other than port j in H

1
and H

2
.

For the remainder of this section, we will assume that
q, H

1
, H

2
, and j are chosen such that DH

1
D#DH

2
D is mini-

mal among all non-trivial pairs. Let ıl"invs(H
1
, j ) (which

is the same as invs(H
2
, j )). Since ıl is finite, suppose that

ıl"Si
1
, i

2
,2, i

k
T and thus has length k. The following

sequence of lemmas demonstrate certain properties of
H

1
and H

2
. These properties allow one T-object to imple-

ment bit
16

.

Lemma 3. ¹he last operation in each of H
1

and H
2

is on
port j.

Proof. Without loss of generality, assume that H
1

ends
with an operation on a port other than j. Let H@

1
be the

prefix of H
1

up to but not including this last operation.
Since that operation is not on port j, invs(H@

1
, j )"ıl and

resps(H
1
, j )"resps(H@

1
, j ). This means that H@

1
and H

2
are

a minimal pair and DH@
1
D#DH

2
D"DH

1
D#DH

2
D!1. This

contradicts the minimality of H
1

and H
2
. K

Lemma 4. One of H
1

and H
2

has length k; that is, it consists
only of operations on port j.

Proof. Let H
0
be the history from q consisting only of the

invocations in ıl on port j. Because resps(H
1
, j )9

resps(H
2
, j ), resps(H

0
, j ) must differ from at least one of

them. Without loss of generality, assume that it differs
from resps(H

2
, j ). In this case, H

0
and H

2
are also a non-

trivial pair. Since DH
1
D#DH

2
D is minimal, DH

0
D#

DH
2
D"k#DH

2
D7DH

1
D#DH

2
D, so DH

1
D6k. Since

H
1

must contain at least the k operations on port j,
DH

1
D"k.5 K

Lemma 4 allows us to assume, without loss of generality,
that H

1
contains only the k invocations on port j and that

H
2

contains at least one invocation on some other port
(otherwise, H

1
"H

2
and they are not a non-trivial pair).

Lemma 5. H
2

consists of one operation on some port other
than j followed by k operations on port j.

Proof. We begin by proving that the last k invocations in
H

2
are all on port j. Let DH

2
D"l'k. Suppose that H

2
is

chosen so that the last operation o on some port other
than j is as late as possible and suppose that this operation
is followed by m operations on port j ; that is, we are
minimizing m over all possible choices for H

2
. Since there

are only k operations on port j, 06m6k. We wish to
prove m"k. Lemma 3 implies m'0, so o is immediately
followed by at least one operation on port j. Let H

4
be

a sequential history from q with the same invocations as
H

2
in the same order except that the order of o’s invocation

and that of the immediately following invocation on port
j are reversed. In H

4
, the last operation on a port other

than j is followed by m!1 operations on port j. Since
H

2
was chosen to minimize m, H

4
and H

1
cannot form

a nontrivial pair. Since invs(H
4
, j )"ıl (the order of

invocations on port j did not change), it must be that
resps(H

4
, j )"resps(H

1
, j ). Since resps(H

1
, j )9resps(H

2
, j ),

resps(H
4
, j )9resps(H

2
, j ).

Note that H
2

and H
4
are identical through their first

l!(m#1) operations. Let q@ be the state of each of these
histories after these operations and let H@

2
and H@

4
be the

suffixes of H
2

and H
4
, respectively, of length m#1. These

are both sequential histories from q@ containing o and the
last m operations on port j. Thus, invs(H@

2
, j )"invs(H@

4
, j ).

Because H
2

and H
4
are identical before these suffixes and

because resps(H
2
, j )9resps(H

4
, j ), it must be that

resps(H@
2
, j )9resps(H@

4
, j ). This means that H@

2
and

H@
4
form a nontrivial pair. DH@

2
D#DH@

4
D"2(m#1). By the

minimality of H
1

and H
2
, DH@

2
D#DH@

4
D"2(m#1)7DH

1
D#

DH
2
D"k#l. Since l'k, we have 2(m#1)7k#l'2k,

so m#1'k. Because m6k by definition, we have m"k,
as desired.

We need now to show that DH
2
D"l"k#1; this will

imply that H
2

is a single operation on a port other than
j followed by k operations on port j. Recall that q@ is the
state of H

2
after its first l!(m#1)"l!(k#1) opera-

tions and that o is an operation on a port other than j that
is executed from state q@. Let H

3
be a history from q gener-

ated by the first l!(k#1) operations in H
2

(which lead
to q@) followed by the k invocations in ıl ; thus, H

3
does

not include o. Since DH
3
D(DH

2
D, H

1
and H

3
cannot
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6 This implies that the prefix of H
2

consisting of its first l!(k#1)
operations is empty. This means that q@"q, H@

2
"H

2
, and

H@
3
"H

3
"H

1
7 One can show that it is sufficient for the process to check only the
last response in rl to see if it matches that of resps(H

1
, j )

form a nontrivial pair; since invs (H
3
, j )"ıl , it must be

that resps(H
3
, j )"resps(H

1
, j ). Thus, resps(H

3
, j )9

resps(H
2
, j ). Let H@

3
be the suffix of H

3
from q@ and

recall that H@
2

is the suffix of H
2

from q@. Clearly,
invs(H@

3
, j )"invs(H@

2
, j )"ıl , resps(H@

3
, j )"resps(H

3
, j ),

and resps(H@
2
, j )"resps (H

2
, j ). Thus, H@

3
and H@

2
form

a nontrivial pair. Since H
1

and H
2

are the shortest such
pair, we have DH@

3
D#DH@

2
D"k#(k#1)"2k#17

DH
1
D#DH

2
D" k#l. Thus, l6k#1. But l'k by defini-

tion, so l"DH
2
D"k#1.6 K

We now know, by Lemma 4, that H
1

consists of k op-
erations on port j and, by Lemma 5, that H

2
consists of one

invocation, say i
4
, on some other port, say j

4
, followed by

the same k invocations on port j. Let q
4
be the state the

results from applying i
4
to O in state q. We can now show

that an object O of any non-trivial deterministic type can
be used by two processes to implement bit

16
. Initialize

O to the state q associated with the shortest nontrivial pair
(see above). Port 1 of the bit

16
-object (the reading port) is

connected to port j of O and a look on that port is
performed as follows:

P
1, look

: : for l :"1 to k
r[l] :"i

l
(O)

If rl"resps(H
1
, j ) then

/* writer has not written */
return(off )

else
/* writer has written */
return(on)

The process performs the invocations in ıl and checks to see
whether or not resps(H

1
, j ) is returned.7 Port 2 of the

bit
16

-object (the writing port) is connected to port j
4

of
O and a set on that port is performed simply with the one
invocation i

4
from H

2
on port j

4
:

P
2, 4et

: : i
4
(O )

return(ok)

Note that the reader may receive a response that is neither
H

1
’s nor H

2
’s. However, this still indicates that the writer

has written, so on can be returned if rl9resps(H
1
, j ).

To prove the correctness of the implementation, we need
to prove it linearizable and wait-free. Wait-freedom is
obvious: each invocation of P

1, look
used exactly k opera-

tions on shared object O, and each invocation of P
2, 4et

uses
one. To show linearizability, we must show that, for each
execution of the implementation, there is a sequential
history that preserves the real-time ordering of the opera-
tions in the execution. Consider an execution of the imple-
mentation. Order the corresponding operations linearly in
any way that is consistent with their real-time ordering
except for the following. If the first execution of
P
1, look

overlaps with the second execution of P
2, 4et

, order

the corresponding look after the corresponding (second)
set. If the first execution of P

1, look
overlaps with the first

execution of P
2, 4et

and completely precedes the second,
order the corresponding look before the corresponding
(first) set if and only if P

1, look
returns off. Note that, by

definition, the resulting linear order respects the real-time
ordering of the programs’ executions.

We need to show that the linear ordering of operations
specified above is indeed a sequential history from off. As
in the proof in Sect. 5.1.1, all set invocations and all look
invocations besides the first return correct values. Con-
sider the first look invocation and the following three cases:

— The look is first in the linear ordering. This means that
the first execution of P

1, look
precedes all executions of

P
2, set

or it overlapped with the first such execution and
returned off. In the first case, the invocations on O from
ıl on port j preceded all other O-accesses. This means
that rl as computed by P

1, look
was resps(H

1
, j ) and

P
1, look

returned off. In both cases, the correct value (off )
is returned.

— The look follows exactly one set in the linear ordering.
This means that the first execution of P

1, look
completely

preceded the second execution of P
2, set

. Also, either the
first execution of P

1, look
took place between the first and

second executions of P
2, set

or it overlapped with the first
execution and P

1, look
returned on. In the first case, O was

in state q
4
when P

1, look
began and the k invocations in

ıl took place consecutively. Thus, rl as computed by
P
1, look

equals resps(H
2
, j ). Since, by definition, this is

different from resps(H
1
, j ), P

1, look
returned on. In both

cases, the correct value (on) is returned.
— The look follows two or more set operations in the linear

ordering. In this case, it can correctly return either off or
on, and it does so.

5.2 High-level types in h
.

Let T be any type such that h
.
(T)72. This means that

there is an implementation of cons
2

using only T-objects
(without registers). We now show that, even if T is
nondeterministic, T can implement bit

16
. We do this by

exhibiting an implementation of bit
16

from cons
2
. Since

T-objects can implement cons
2
, then they can implement

bit
16

.
Let O be a cons

2
-object, initialized to state o. Port

1 (respectively, port 2) of bit
16

corresponds to port 1 (re-
spectively, port 2) of O. A look on port 1 of bit

16
is

performed as follows:

P
1, look

: : if i
0
(O)"0 then

return(off )
else

return(on)

A set on port 2 is performed as follows:

P
2, set

: : i
1
(O )

return(ok)

Basically, the reader proposes 0, meaning ‘‘look precedes
set,’’ while the writer proposes 1, meaning ‘‘set precedes
look.’’ The ‘‘winner’’ of O determines the consensus value
and thus the ordering of the first look and the first set. Note
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8 In fact, Jayanti exhibited the following: for each k'1, a type
T
k
such that h3

.
(T

k
)"k and h

.
(T

k
)"1

that this implementation returns the same response to all
invocations of look on port 1; this is permitted by the
nondeterministic specification of bit

16
.

To prove the correctness of the implementation, we
need to prove it linearizable and wait-free. Wait-freedom is
obvious: each invocation uses exactly one operation on
shared object O. To show linearizability, we must show
that, for each execution of the implementation, there is
a sequential history that preserves the real-time ordering
of the operations in the execution. Consider an execution
of the implementation. We now describe a linear ordering
of the corresponding operations. Since each invocation
contains exactly one access to O, order the corresponding
operations according to the order of these accesses. As
in Sect. 5.1.1, it is easy to see that the resulting linear
ordering respects the real-time ordering of the programs’
executions.

Finally, we need to show that the linear ordering of
operations specified above is indeed a sequential history
from off. As in the proofs in Sect. 5.1, all set invocations
and all look invocations besides the first return correct
values. Consider the first look invocation and the following
three cases:

— The look is first in the linear ordering. This means that
its O-access preceded all others, which was thus in state
o when the corresponding execution of P

1, look
proposed

0 (invoked i
0
). By the specification of cons

2
, O returned

0, so P
1, look

returned off, as desired.
— The look follows exactly one set in the linear ordering.

This means that an execution of P
2, set

invoked i
1
on O in

state o. After this, O was in state 1. The corresponding
execution of P

1, look
then applied i

0
to O and, by the

specification of cons
2
, received response 1. Therefore,

the P
1, look

returned on, as desired.
— The look follows two or more set operations in the linear

ordering. In this case, it can correctly return either off or
on, and it does so.

6 Applications to wait-free hierarchies

The above results have two important applications to
wait-free hierarchies:

Theorem 6. Suppose that one of the following holds of
type T:

— T is deterministic; or
— h

.
(T)72.

¹hen h
.
(T)"h3

.
(T).

Proof. Let T be a type with one of the above properties.
Recall that 16h

.
(T)6h3

.
(T) for all types T. It thus suffi-

ces to show that h3
.
(T)6h

.
(T). The proof is divided into

three cases:

— T is deterministic and trivial. This means that, no matter
how a T-object is initialized, any sequence of invoca-
tions on a port always returns the same sequence of
responses. The object can thus be trivially implemented
locally (this conclusion requires our assumption that no
more than one process can access a particular port).
This means that, if h3

.
(T)7n, then registers alone can

implement n-process consensus. Since registers cannot
implement 2-process consensus [6, 11, 20], this implies
that h3

.
(T)"1. Since h

.
(T)71 for any T, h3

.
(T)6h

.
(T)

as desired.
— T is deterministic and non-trivial. We show that, for all

n, h3
.
(T)"n implies h

.
(T)7n. If h3

.
(T)"n, then regis-

ters and T-objects can implement n-process consensus.
As noted in Sect. 4.1, the registers can be bit

.6
-objects.

Section 4.2 showed that there is bound on the number of
times each bit

.6
-object may be used and Sect.4.3

showed that, if this is the case, each such bit
.6

-object
may be implemented by a finite number of bit

16
-objects.

Section 5.1 showed that an object of any non-trivial
deterministic type can implement bit

16
. Thus, T-objects

can implement n-process consensus (without registers).
This implies that h

.
(T)7n, as desired.

— h
.
(T)72. Again, we show that, for all n, h3

.
(T)"n

implies h
.
(T)7n. As noted above, if h3

.
(T)"n, then

some set of T and bit
16

-objects can implement n-process
consensus. Section 5.2 showed that one T-object can
implement bit

16
. Thus, some set of T-objects can imple-

ment n-process consensus without using registers. This
implies that h

.
(T)7n, as desired.

In all cases, h3
.
(T)6h

.
(T). This implies h

.
(T)

"h3
.
(T). K

Theorem 6 shows that Jayanti’s choice of a type T to
distinguish h

.
and h3

.
was not accidental: it had to be

a nondeterministic type with h
.
(T)"1 and h3

.
(T)72.8

7 Conclusions

The results of this paper show that, in most cases of
interest, registers are not ‘‘special’’ when it comes to imple-
menting wait-free consensus. This can simplify the reason-
ing process: various arguments made with the assumptions
that registers are available (e.g., about the hierarchy h3

.
)

apply when they are not (e.g., to the hierarchy h
.
); the

converse is also true.
Theorem 6 shows that, for two large classes of concur-

rent data types, Jayanti’s wait-free hierarchies h
.

and
h3
.

are equal. One of these is the class of deterministic
types, which is of considerable interest. Furthermore, these
results pertain to Jayanti’s robustness property. His proof
that h

.
is not robust does not apply, for example, to

deterministic types. Recent papers [3, 24] have claimed
that h3

.
is robust for certain classes of deterministic types.

The results of the current paper would then imply that
h
.

is also robust for these types.
Although this paper has shown how most interesting

types can implement registers in the context of a wait-free
consensus algorithm, one should note that this context
was required only in Sect. 4.2. Since results similar to that
section can be shown for wait-free implementations of any
bounded-use type, our implementations of registers are
thus applicable also to these implementations.
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